Impedance

\[V = IR \Rightarrow V = IZ \]

Where

\[Z = \sqrt{(X_L - X_C)^2 + R^2} \]

- **Inductive Reactance**
 \[X_L = \omega L \]
- **Capacitive Reactance**
 \[X_C = \frac{1}{\omega C} \]

Forced Signal

\[f^* \]

At Resonance:

\[X_L = X_C \Rightarrow Z = R \]

Note: Not always the case

Experiment:

- **Power Amp:** 2.97V
- **Sine Wave @ 10Hz**
- **Scope:** Output Voltage vs. Voltage Sensor (5000 Hz)
- **Iron Core Inside Inductor**
- **Note:** Voltage Sensor Around Resistor, Not Inductor

Report

- Coversheet
- Questions
- Tapes
- Plot
- Current \(\frac{V_r}{E} \) vs. Linear Freq (f)
- \(V_r \) vs Linear Freq
- Voltage vs Time at Resonance

\[V \]

\[\sim T \stackrel{-}{\sim} \]