Lab 5 - RC Circuit

Charge on the Capacitor

\[Q(t) = q_0(1 - e^{-t/\tau}) \]

Voltage Across Capacitor

\[V_c(t) = V_0(1 - e^{-t/\tau}) \]

Charging Process

\[V = IR + \frac{Q}{C} \]

Charge

\[Q = Q_{\text{max}}(1 - e^{-t/\tau}) \]

Charge-Time Graph

- \(t_0 \) to \(t_1 \)
- \(t_1 \) to \(t_2 \)
- \(t_2 \) to \(t_f \)

Experiment

- **Power Add**
 - Positive Square Wave
 - \(4 \text{V} \) @ 0.1Hz
- **Sampling Options**
 - Auto Stop @ 20 sec.
- **Graph**
 - Voltage vs Time
 - Decimals ~ 5
 - Max Charge: \(Q_0 = C_{\text{max}} \times V_{\text{max}} \)

Lab Report

- Cover Sheet, Questions
- Z Plots
 - Fig 1: Charge/Discharge of \(C \)
 - Fig 2: Half-Life (t/2)

Note

- \(\Delta = t_f - t_0 \) from Smart tool

1971 Physics 2 - Calculus Based Page 1