Line of Best Fit (Least Square Method)

A line of best fit is a straight line that is the best approximation of the given set of data. It is used to study the nature of the relation between two variables.

A line of best fit can be roughly determined using an eyeball method by drawing a straight line on a scatter plot so that the number of points above the line and below the line is about equal (and the line passes through as many points as possible).

A more accurate way of finding the line of best fit is the least square method.

Use the following steps to find the equation of line of best fit for a set of ordered pairs.

Step 1: Calculate the mean of the \(x \)-values and the mean of the \(y \)-values.

Step 2: Compute the sum of the squares of the \(x \)-values.

Step 3: Compute the sum of each \(x \)-value multiplied by its corresponding \(y \)-value.

Step 4: Calculate the slope of the line using the formula:

\[
 m = \frac{\sum xy - (\sum x)(\sum y)}{\sum x^2 - (\sum x)^2/n}
\]

where \(n \) is the total number of data points.

Step 5: Compute the \(y \)-intercept of the line by using the formula:

\[
 b = \bar{y} - mx
\]

where \(\bar{y} \) and \(\bar{x} \) are the mean of the \(x \)- and \(y \)-coordinates of the data points respectively.

Step 6: Use the slope and the \(y \)-intercept to form the equation of the line.

Example:

Use the least square method to determine the equation of line of best fit for the data. Then plot the line.

\[
\begin{array}{c|ccccccccccc}
 x & 8 & 2 & 11 & 6 & 5 & 4 & 12 & 9 & 6 & 1 \\
 y & 3 & 10 & 3 & 6 & 8 & 12 & 1 & 4 & 9 & 14 \\
\end{array}
\]

Solution:

Plot the points on a coordinate plane.
Calculate the means of the \(x \)-values and the \(y \)-values, the sum of squares of the \(x \)-values, and the sum of each \(x \)-value multiplied by its corresponding \(y \)-value.

\[
\begin{array}{c|c|c|c}
 x & y & xy & x^2 \\
8 & 3 & 24 & 64 \\
2 & 10 & 20 & 4 \\
11 & 3 & 33 & 121 \\
6 & 6 & 36 & 36 \\
5 & 8 & 40 & 25 \\
4 & 12 & 48 & 16 \\
12 & 1 & 12 & 144 \\
9 & 4 & 36 & 81 \\
6 & 9 & 54 & 36 \\
1 & 14 & 14 & 1 \\
\sum x = 64 & \sum y = 70 & \sum xy = 317 & \sum x^2 = 528 \\
\end{array}
\]

Calculate the slope.

\[
m = \frac{\sum xy - (\sum x)(\sum y)}{\sum x^2 - (\sum x)^2} = \frac{317 - (64)(70)}{528 - (64)^2} = \frac{317 - 4480}{528 - 4096} = \frac{-4163}{-3568} \approx -1.1
\]

Calculate the \(y \)-intercept.

First, calculate the mean of the \(x \)-values and that of the \(y \)-values.
Line of Best Fit (Least Square Method)

\[\bar{x} = \frac{\sum x}{n} \quad \text{and} \quad \bar{y} = \frac{\sum y}{n} \]

\[= \frac{64}{10} = \frac{70}{10} \]

\[= 6.4 = 7.0 \]

Use the formula to compute the \(y \)-intercept.

\[b = \bar{y} - m\bar{x} \]

\[= 7.0 - (-1.1 \times 6.4) \]

\[= 7.0 + 7.04 \]

\[\approx 14.0 \]

Use the slope and \(y \)-intercept to form the equation of the line of best fit.

The slope of the line is \(-1.1\) and the \(y \)-intercept is 14.0.

Therefore, the equation is \(y = -1.1 \, x + 14.0 \).

Draw the line on the scatter plot.