Defining the Availability of Contaminants in Sediments

Danny D. Reible, PhD, PE, DEE, NAE University of Texas

Acknowledgements: Nate Johnson, XiaoXia Lu, Dave Lampert, Brian Drake, Alison Skwarski

Linking Sediment Exposure and Risk

- Relevance of bulk sediment concentration
 - Erosive sediments if complete desorption possible
 - Surficial sediments if complete desorption possible or if organisms can access all of contaminant
- Relevance of pore water concentration
 - Mobile fraction of buried stable sediments
 - Indicator of bioavailability of surficial or erodible sediments ?

A Tale of Two Contaminants

- Hydrophobic Organic Contaminants
 - PAHs
 - PCBs
- Mercury

Hydrophobic Organic Compounds

Does pore water concentration define exposure and risk?

Bulk Sediment Concentration Correlates only Weakly with PAH Toxic Endpoints

Porewater Concentration Better Correlates with Survival

Bioavailability Studies

Test organism

Deposit-feeding freshwater tubificide oligochaete

Ilyodrilus templetoni

High tolerance to contaminants and handling stress

Intense sediment processing environment (overcome MT resistances?)

Measure of bioavailability = steady state BSAF

 $BSAF = \frac{C_t / f_{lip}}{C_s / f_{oc}}$

Where

 C_t is contaminant concentration accumulated in organisms' tissue (µg/g)

 f_{lip} is organisms' lipid content (g lipid/g dry worm)

 C_s is the sediment concentration (µg/g dry sediment)

 $f_{\rm oc}$ is total organic carbon content of the sediment (g TOC/g dry sediment).

Normalized Accumulation as Indicator of Bioavailability

- BSAF of O(1) for reversibly sorbed nonmetabolizing contaminants in directly exposed organisms at steady state (e.g. benthic deposit feeders)
- If accumulation indicated (not necessarily caused) by porewater concentration

Does it predict uptake of PAHs?

Uptake of benzo[a]pyrene from water

Contribution of ingestion to the uptake of benzo[a]pyrene

Measurement of Porewater Concentrations

• Problems

- Low porewater concentrations limits the measurement of more hydrophobic compounds like PCBs
- Solvent extraction overestimates the freely dissolved porewater concentration due to the absorption by DOC
- Errors due to the measurement of DOC and uncertainties in determination of K_{DOC}

Solution – solid phase microextraction SPME

- Potential extremely low detection limits due to high fiberwater partition coefficients
- Decouple sampling from water-DOC matrix effects
- High spatial resolution, rapid dynamics
- Employed ex-situ by National Grid/RETEC (Nakles)

Other Porewater Measurement Approaches

Ex-situ SPME

- Proving to be valid approach
- Maintenance of profiles?
- Maintenance of sample integrity?
- Semi-permeable membrane devices
 - Dynamics?
 - Spatial resolution?
- Passive Polyethylene Samplers
 - Currently under development (P. Gschwend)

Objectives of ESTCP effort

- Demonstrate solid-phase micro extraction (SPME) for the in-situ assessment of bioavailability
- Demonstrate viable deployment approach
- Demonstrate relationship' to sediment pore water concentrations
- Demonstrate relationship to benthic organism body burdens

Overall Project plan

Laboratory

- Optimization of Deployment Conditions
- Correlation with uptake in benthic organisms under controlled conditions
- Field
 - Demonstration of relationship between measured pore water and organism uptake
 - Comparison to conventional measurements
- Commercial Laboratory
 - Demonstrate potential for routine availability

Laboratory efforts

- Evaluate key implementation characteristics
 - Fiber-water partition coefficient
 - Dynamics of uptake
 - Reproducibility
 - Accuracy
- Confirm relationship to availability
 - PCBs/ PAHs
 - Freshwater/ Marine Organism
 - Endpoint- Accumulation
 - Methods
 - "Raw" Sediment exposure
 - Sequential dilution exposure

Field efforts

- Freshwater and Marine Sites
- Opportunistic organisms and controlled (caged) organism studies
- PAHs/PCBs
- Adherence to DoD QA/QC guidelines
- Cooperative efforts where possible
 - Anacostia Active Capping Demonstration (Reible)
 - Hunters Point Demonstration (Luthy)
 - PET development (Gschwend)
 - Survival endpoint (Nackles)

Solid Phase MicroExtraction Sorbent Polymer

PDMS (poly-dimethylsiloxane)

- Thickness of glass core: 114-108 µm
- Thickness of PDMS coating: 30-31 µm
- Volume of coating: 13.55 (±0.02) µL PDMS per meter of fibre

Using SPME to Measure Porewater Concentration

Matrix-SPME ---A nondepletive, equilibrium extraction

- "nondepletive" refers to an extraction that is limited to a minor part of the analyte and which does not deplete the analyte concentration
- "equilibrium" refers to extraction times are sufficiently long to bring the sampling phase into its thermodynamic equilibrium with the surrounding matrix.
 - + At equilibrium,

$$C_{porewater} = C_{fiber} / K_{fiber-water}$$

C_{fiber}=mass of contaminant absorbed by fiber/fiber volume (volume of PDMS)

K_{fiber-water} is fiber-water partition coefficient

Expected detection limit PDMS fiber

Compounds	Log	Method	C _{det,water}	C _{det,water}
	K _{PDMS,}	detection	(1 cm fiber)	(5cm fiber)
	water	limit		
Phenanthrene	3.71	1.14 μg/L	164.6	32.9 ng/L
pyrene	4.25	3.44	143.3	28.7
chrysene	4.66	0.79	12.8	2.56
B[b]F	5.0	0.32	2.37	0.47
B[<i>k</i>]F	4.77	0.15	1.89	0.38
Benzo[<i>a</i>]pyrene	4.87	0.17	1.70	0.34
PCB 28	5.06	0.5	3.22	0.645
PCB 52	5.38	0.5	1.54	0.31
PCB 153	6.15	0.2	0.11	0.021
PCB 138	6.20	0.2	0.0935	0.019
PCB 180	6.40	0.2	0.059	0.012

Uptake of PAHs in PDMS fiber (Sediment)

Uptake of PCBs in PDMS fiber (Sediment)

Benthic Bioaccumulation Experiments

Conduct whole-sediment exposures to simultaneously measure bioaccumulation and fiber uptake.

Exposure design

- Mass of exposure organism per replicate approximately 50 mg
- Ratio OC to biomass > 50:1
- 21-day exposure duration
- No feeding
- Gentle aeration
- Overlying water exchanged 2x weekly

SPME Deployment in Sediment

Conder and La Point (2004): Env. Tox. Chem. 23:141

Experimental Species

Leptocheirus plumulosus

Neanthes arenaceodentata

Lumbriculus variegatus

Tubifex tubifex

Field Deployment System

Anacostia Sediment Porewater Concentration

Tſ

PAH	Measured SPME	Measured by LLE	II Reversibly Sorbed	
Phenanthrene	210	370	1810	
pyrene	610	730	990	
chrysene	7.1	7.8	83	
B[b]F	2.1	5.3	70	
B [<i>k</i>]F	1.8	2	55	
B[a]P	1.9	2	68	

PAHs correlated with:

PCBs correlated with:

Field Deployment System

Biota-sediment accumulation factors of PAHs and PCBs(Measured vs predicted)

Preliminary Conclusions

- Good correlation of porewater concentration with uptake for all compounds
- SPME provides excellent indication of porewater concentration and uptake (within a factor of two in this preliminary assessment)
- Measured BSAF for both PAHs and PCBs were greater than predicted
- Indicates K_{lipid}/K_{oc} > 1
 PAH K_{lipid}/K_{oc} ~ 1.25 2

 - PCB $K_{lipid}/K_{oc} \sim 1-3$
 - PAHs BSAF < <1 indicates desorption resistance in complex field-contaminated sediment

Mercury

Do soluble species define exposure and risk?

Mercury Containment by a Cap

Methylmercury Containment by a Cap

Methylmercury Production

Eraction of Molda	over Total He in	Sodimont Profiles
гласцоп ог мену	over rotarny in	Sequinent Promes

~		Sediment from area 3			Sediment from area 4		
~	Depth ^a	MeHg/THg (×10 ⁻⁴)		Ratio of capped	MeHg/THg (×10 ⁻⁴)		Ratio of capped to
~	mm	Capped	Uncapped	to uncapped	Capped	Uncapped	uncapped
~	1	6.5	4.7	1.4	1.5	3.1	0.48
	3	3.3	5.5	0.60	1.3	2.4	0.54
~	5	3.0	6.2	0.48	1.3	2.6	0.50
	7	2.8	5.3	0.53	1.7	2.6	0.65

 a: for capped cells, zero depth represents the sediment-cap interface; for uncapped cells, zero depth represents sediment-water interface

Mercury Fate in Sediments

Motivation

- Nutrient gradients governed by bacterial activity.
- Mercury methylation mediated by Sulfate Reducing Bacteria.
- Mercury Methylation tied to
 Sulfate Reduction

Experimental Set-up

Bulk sediment samples placed in experimental microcosms and allowed to equillibrate

Aluminum support and micromanipulator used to hold electrodes in place

Voltammetric Microelectrodes

Theory

- Apply sweeping electric potential to electrode
- Electroactive species in porewater are oxidized/reduced at characteristic potentials

Capabilities

 Gold-Mercury amalgam microelectrode (ideally <1mm) measures O₂, Fe²⁺, Mn²⁺, HS⁻, and FeS_(aq), all environmentally important for redox cycling in sediments

Preliminary Findings

Preliminary Profiles

- Oxygen disappears in first 2-3 mm in sediment
- Increasing amounts of Mn²⁺ (>200 uM) and Fe²⁺ observed
- No sulfide observed, but evidence of FeS_(aq) complex

Probing dynamics

- Size of electrode used for profiling important
- Should be <1mm for reasonable time to equilibrium

Future Plans

Capping Simulation

- Install electrodes at depths in and above sediment
- Monitor to observe steady behavior
- Place 1-2cm cap and monitor dynamics of changes in O₂, Mn²⁺, Fe²⁺ due to cap placement.

Mercury Implications

• Before and after capping simulation, core column and measure total and methyl mercury.

Geochemical Modeling

- Calibrate geochemical model with results of experimental observations
- Link mercury methylation to sulfate reduction in model

Conclusions

- Hydrophobic organic uptake controlled by pore water concentration
- SPME promising method for determining pore water concentrations in-situ
- Mercury risk controlled by methyl mercury formation which is a strong function of sediment biogeochemistry and soluble species in pore water
- Capping appears to reduce methylation and effectively contains all mercury species
- Voltametry promising characterization method