Phytoremediation, a novel strategy for the removal of toxic metals from the environment: biochemical and molecular mechanisms

Shivendra V. Sahi, Ph.D. Department of Biology Western Kentucky University

WESTERN KENTUCKY UNIVERSITY

Outline

- Introduction of phytoremediation
- Sesbania drummondii
 - Metal uptake
 - Microscopic evidence of metal transport
 - Biotransformation of metal compounds
 - Stress enzymes
 - Gene identification/expression
 - Long term goal
 - Conclusion

Phytoremediation

Use of vegetation for the *in situ* treatment of contaminated sites

- A fast emerging environmental clean up strategy
- Immense promise for remediation of contaminated sites (soil, ground water, waste water)
- Effective against
 - **inorganic** (toxic metals and nutrients)
 - organic pollutants (BTEX)
 - chlorinated solvents, ammunition wastes

Background

Sources of pollution:

 Mining and smelting, municipal wastes, sewage sludge, landfill leachates, fertilizers, pesticides, nuclear accidents

Dimension of the problem:

- 1980 Statute recognized over 40,000 Superfund sites endangering human health
- >10,000 sites remain active today (Superfund Accomplishment Figures-FY 2003)
- 40% of these sites have problems of heavy metal (Pb, Cd, Cr, As, Zn etc.) contamination

Conventional remediation strategies against metal contaminations

- Excavation and reburial of contaminated soils to another site
- Soil flushing/washing
- Solidification/stabilization
- Vitrification
- Electro-kinetics

Cost Analysis

- Conventional engineering technology v/s Phytoremediation (TIBTECH, 13, 1995)

Contaminants	Conventional Technology	Phytoremediation
Water soluble/ volatile compounds	\$10-100 per m ³ soil	\$ 0.02-1.00 per m ³ soil (\$200-10,000 per
Compounds requiring land- filling or low temp. thermal treatments	\$ 60-300 per m ³ soil	hectare) of cropping
Materials requiring special land-filling or high temp. thermal treatment	\$ 200-700 per m ³ soil	
Incineration	\$ 100 per m ³ soil	
Radionucleides	\$ 1000-3000 per m ³ soil	

Benefits

- Economically feasible
- Socially desirable
- Environment friendly
- Improves soil health
- Effective

Phytoremediation approaches

- 1. **Phytoextraction**: to remove contaminants directly from soil/water
- 2. **Phytostabilization**: use of vegetation and soil amendments to reduce contaminant availability and movement.
- 3. **Rhizofiltration**: plant root system is directed to extract pollutants from water bodies
- 4. **Phytomining**: for extraction and concentration of valuable metals

Prerequisites for Phytoremediation

Hyperaccumulators

- Accumulate 100 times more metals than the nonaccumulators
 - Conc. Criterion (% Shoot DW) Cd (>0.01), Co, Cu, Cr and Pb (>0.1), Ni and Zn (>1), Hg (0.001)
- Should have good biomass

Terrestrial Hyperaccumulators (Brooks, 1998)

Plant	Metal	% metal in shoot (DW)
Thlaspi caerulescens	Zn, Cd	>2% Zn, >0.1% Cd,
Thlaspi spp.	Zn	>2%
Cardaminopsis hallerii	Zn	>1%
Brassica spp.	Se	
Astragalus spp.	Se	0.1-1%
Atriplex spp.	Se	
Thlaspi rotundifolium	Pb	<1% (~0.8%)
Aelloanthus subacaulis	Cu	1.3%
Haemaniastrum spp.	Со	Up to 1 %
Brake fern	As	>1.5% (Nature,409,2001)

Aquatic Hyperaccumulators

The water hyacinth (Eichhornia crassipes)

Rate of removal of heavy metals from aqueous phase					
Element	mg/g DW biomass/day	g/ha/day			
Cd	0.67	400			
Со	0.57	340			
Pb	0.18	90			
Hg	0.15	110			
Ni	0.50	300			
Ag	0.44	260			

Gold Hill Mesa Corp. (CO Springs) - water hyacinth for removal of Au from Au tailings.

Sesbania drummondii

- A high biomass plant
- Common name: Rattlebox
- Native to Southeastern U.S.

Sesbania drummondii & Lead

Demonstrated as lead

hyperaccumulator

- Tolerates up to 1,000 ppm in hydroponic solution
- Accumulated >4% (DW) Pb in shoots in hydroponic conditions
- Roots showed 6% (DW) accumulation
- EDTA and low pH increased accumulation further

(EST 36, 4676-4680, 2002).

mg/kgdw Pb

mg/L Pb

Sesbania in soil supplemented with Pb

Sesbania in soil supplemented with Pb

Estimated total Pb removed from soil by several plants

(Ruley 2004)

Species	Chelators	Soil Pb (mg/kg)	Shoot Pb (%)	Biomass (t/ha/yr)	Est. total Pb extr. (kg/ha/yr)	Source
Zea mays	5.8 mmol/kg HEDTA	2500	1.06	5-6	53-64	Huang et al. 1997
Pisum sativum	1.34 g/kg EDTA	2450	0.897	3-4	27-36	Huang et al. 1997
Sesbania drummondii	10 mmol/kg EDTA	7500	0.42	10-15	43-63	
Brassica juncea	10 mmol/kg EDTA	600	1.6	1-1.5	16-24	Blaylock et al. 1997
Triticum aestivum	5 mmol/kg EDTA+5 mmol/kg acetic acid	2000	0.92	2.5	23	Begonia et al. 2002

Gold uptake by Sesbania

Scanning Electron Microscopy of Plant shoot grown in metals

X-ray microanalysis (EDS) of Sesbania tissue

Transmission Electron Microscopy of Sesbania tissues with metals

Gold nanoparticles in Sesbania

Gold Extraction

Transport of Pb in Sesbania

- Scanning Electron Microscopy
 - Transport of metals via different cell types
- Transmission Electron Microscopy
 - Pb particles in intercellular spaces, cell membranes and cell walls.
 - Au particles (nanoparticles) are inside the cell.
 - Some deposits were also located within the tonoplast.

Biotransformation of Metals (Using XAS Technology)

Types of XAS

XANES (X-ray absorption near edge structure)
determines the oxidation state and atomic geometry of a bound metal.

EXAFS (Extended X-ray absorption fine structure) – traces the ligand involved in the metal binding by measuring the distance from the X-ray-absorbing atom to the next nearest atom.

XANES Spectra of Sesbania (ET & C 23, 2068, 2004)

A) L_{III} XANES of lead laden plant samples, lead(II) nitrate, and lead(II) acetate. LIII XANES of lead model compounds lead(II) sulfide, lead(II) sulfate, and lead(IV) oxide. **B**)

EXAFS Spectra of Sesbania

XANES and EXAFS data of Pb-treated *Sesbania*

(Environ. Toxicol. Chem. 23, 2068-2073, 2004)

Samples	$Pb(NO_3)_2$	PbSO ₄	Pb metal	PbS	Pb
-	%	%	%	%	acetate
					%
Leaves	7.6	25.8	0	14.2	52.4
Roots	10.1	0	8.8	20.2	60.9

A. XANES of gold model compounds: gold acetate, gold hydroxide, potassium tetrachloroaurate, gold sulfide, and gold metal.

B. XANES of gold-laden plant samples.

XANES of gold accumulated in Sesbania

Samples	%	%	%	%	%
	KAuCl ₄	$Au(CH_3COO)_3$	Au ₂ S	Au(0)	AuOH
Au	0	0	18.4	81.6	0
50 ppm roots					
Au	0	0	16.4	83.6	0
100 ppm roots					
Au	0	0	14.2	84.4	1.4
100 ppm shoots					

XANES of Cu accumulated in

Sesbania

(Chemosphere 67, 2257-66, 2007)

Samples	% copper(II) acetate	% copper(II) nitrate	% copper(II) phthalocyanine	% copper(II) gluconate	% copper(II) Oxide
Cu 25 mg l⁻¹	0	20	2	57	21
Cu 100 mg l ⁻¹	30	14	5	18	33

Biotransform cupric sulfate to copper(II) sugar/small organic acid complex and acetate in its tissue

XANES analysis of Cr in Sesbania

Sesbania has capability to biotransform Cr(VI) in to Cr(III) in its tissue

Antioxidant Reactions & metal Stress in *Sesbania*

- Generally metal exposure triggers an increase in activity of antioxidant enzymes.
 - Superoxide dismutase (SOD) catalyze dismutation of superoxide radicals to hydrogen peroxide & oxygen
 - Catalase (CAT) catalyzes decomposition of hydrogen peroxide to water and oxygen
 - Ascorbate deroxidase (APX) detoxifies hydrogen peroxide to water using ascorbate as substrate
 - Glutathione reductase (GR) reduces oxidized glutathione (GSSG) to reduced glutathione (GHS)
 - maintains high GHS/GSSH to sustain role of GHS as antioxidant
 - also incorporating into phytochelatins
 - GSH also function as free radical scavenger

Stress enzymes in Sesbania in Cr

Stress enzymes in Sesbania in Hg

WESTERN KENTUCKY UNIVERSITY

BIOTECHNOLOGY CENTER applied research and technology program

Glutathione content

WESTERN KENTUCKY UNIVERSITY

Identification of lead and mercury responsive genes

Experimental Design

Suppression subtraction hybridization (SSH)

- Based on the technique called suppression PCR
- Compare two populations of mRNA
- Obtain clones of genes that are expressed in one population but not in the other

Sequencing results for Pb samples

- 63 clones corresponds to unigenes
- 49 (78 %) identified as segments of cDNAs contained in GenBank database
- 14 (22 %) were unknown (no similarity)
- Clone # 7 exhibited homology to type 2 metallothionein sequences

Clone	Accession number	Length (bp)	$Homology^{\mu}$	E-value
0011.1	DQ465754	102	Acanthopanax sessiliflorus cDNA library Eleutherococcus sessiliflorus cDNA,	0.0
SSH-1	00405755	183	mRNA sequence (CF923918)	1 -159
	DQ465755		Apple_ES1_Mdas Malus x domestica cDNA similar to dbjBAB33421.1 putative	le
SSH-2		293	senescence-associated protein [Pistum Sativium], mKINA sequence (DR993778)	
CCLI 2	DO465756	282	CabSau Flower Stage 12 (FLOu0012) Vitis vinifera cDNA clone VVI101F09 5,	0.0
550-5	DQ465756	282	mRNA sequence (D1015551)	0.0
SSH-4	DQ403737	666	sequence (BG838800)	0.0
	DQ465758		Phaseolus vulgaris seedling EST Library inoculated with anthracnose-	0.0
SSH-5		569	PVEPSE3029E14 5', mRNA sequence(CB543340)	
SSH-6	DQ465759	565	Phaseolus vulgaris seedling EST Library inoculated with anthracnose-cDNA clone PVEPSE3030N16 5', mRNA sequence (CB543682)	0.0
	DQ465760		Type 2 Metallothionein-Cytochrome P450 like TBP [Citrullus lanatus]	0.0
SSH-7		414	(AB182926)	
SSH-8	DQ465761	620	Cytochrome P450 like_TBP [Nicotiana tabacum] (BAA10929)	0.0
	DQ465762		Glycine max cDNA clone Gm-c1086-27 5' similar to CYTOCHROME P450	1e ⁻¹⁷⁴
SSH-9		313	LIKE_TBP mRNA sequence (BM091724)	
SSH-10	DQ465763	366	Glycine max cDNA, mRNA sequence (BE660497)	0.0
SSH-11	DQ465764	478	Glycine max cDNA, mRNA sequence (BU927378)	0.0
0.077.40	DQ465765	600	Glycine soja cDNA clone SOYBEAN CLONE ID: Gm-c1056-3170 5', mRNA	0.0
SSH-12	0.00000000	692	sequence (CA799399)	
SSH-13	DQ465766	739	Glycing max cold stressed leaves cDNA clone Gm01 16d09, mRNA sequence (BG839363)	0.0
	DQ465767		Given max cold stressed leaves cDNA clone Gm01 17a09 mRNA sequence	0.0
SSH-14		674	(BG839403)	
SSH-15	DQ465768	471	Gmax SC Glycine max cDNA, mRNA sequence (BE660497)	0.0
	DQ465769		Gossypium hirsutum cDNA clone GH_CHX12C18 3', mRNA sequence	0.0
SSH-16		875	(DT462491)	
SSH-17	DQ465770	840	hemolysin [Acanthamoeba polyphaga] (AAA58585)	0.0
SSH 18	DQ465771	666	Heterobasidion annosum - Scots pine infection stage (HAGE) subtraction cDNA	2e ⁻⁶⁵
5511-10	DO465772	000	Leafy spyce subtrative CDNA libratis Euchorbia style CDNA clone RTP5015	1e ⁻¹⁵⁸
SSH-19	00400772	295	5', mRNA sequence (DT639472)	10
	DQ465773		Lotus japonicus nodule library 5 and 7 week-old Lotus corniculatus var. japonicus	0.0
SSH-20		633	cDNA 5', mRNA sequence (AW720640)	
SSH-21	DQ465774	299	Medicago truncatula cDNA clone MtTA01F19S6, mRNA sequence	1e ⁻¹⁴⁹
5511-21	DQ465775	2222	Medicano trancatula cDNA clone MtTA09L24S6 mRNA sequence	1e ⁻¹⁷⁷
SSH-22		341	(AJ847823)	
	DQ465776		Methyl Jasmonate-Elicited mRNA sequence from Root Cell Suspension Culture	0.0
SSH-23		522	Medicago truncatula (CX533136)	
SSH-24	DQ465777	137	Mimulus guttatus cDNA clone 0048P0008Z, mRNA sequence (CV515336)	9e ⁻³
0.011.05	DQ465778	214	Phaseolus vulgaris leaf EST library cDNA clone PV_GEa0013C_C03.b1 5',	1e ⁻¹⁶⁵
SSH-25	00405770	314	mRNA sequence (CV530371)	
SSH-26	DQ405//9	628	mRNA sequence (CV531021)	0.0
	DQ465780		Populus trichocarpa cDNA clone WS02553 I06 3', mRNA secuence	1e ⁻¹²⁷
SSH-27		229	(DT493138)	
	DQ465781		Potato abiotic stress cDNA library Solanum tuberosum cDNA clone POAD792 5'	0.0
SSH-28		899	end, mRNA sequence (CK272883)	
COLL 20	DQ465782	000	Water stressed gmrtDrNS01 32 Glycine max cDNA 3', mRNA sequence	0.0
SSH-29		900	(CX711410)	

SSH-30	DQ465783	565	Probable cytochrome P450 monooxygenase - maize (fragment) (T02955)	0.0
SSH-31	DQ465784	666	Putative ACC synthase/oxidase gene (BAB33421)	0.0
SSH-32	DQ465785	255	rRNA promoter binding protein [Rattus norvegicus] (NM147136)	1e ⁻¹⁴³
	DQ465786		Sesbania rostrata root primordia cDNA clone SSH-10, mRNA sequence	0.0
SSH-33		657	(AJ301742)	
	DQ465787		Subtracted cDNA library of maize inbred line H95-Rp1-Kr1N Zea mays cDNA	1e ⁻²⁶
SSH-34		162	clone Kr1N-4_D09, mRNA sequence (CA452627)	
SSH-35	DQ465788	531	Unknown protein (Schistosoma japonicum) (AAX30301)	0.0
	DQ465789		Water stressed gmrtDrNS01_28 Glycine max cDNA 3', mRNA sequence	0.0
SSH-36		889	(CX711160)	
	DQ465790		Water stressed gmrtDrNS01_30 Glycine max cDNA 3', mRNA sequence	0.0
SSH-37		874	(CX548993)	
	DQ465791		Water stressed gmrtDrNS01_31 Glycine max cDNA 3', mRNA sequence	0.0
SSH-38		446	(CX707998)	- 1
SSH-39	DQ465792	289	Unnamed protein product [Kluyveromyces lactis NRRL Y-1140] (CAH00932)	5e ⁻⁹¹
	DQ465793		CYTOCHROME P450 monooxygenase (EC 1.14.14.1) - common tobacco (0.0
SSH-40		648		
SSH-41	DQ465794	881	Hypothetical protein [Oryza sativa (japonica cultivar-group)] (BAD46202)	0.0
SSH-42	DQ465795	357	26S ribosomal protein	0.0
	DQ465796		Hypothetical protein GLP_748_1200_211 [Giardia lamblia ATCC 50803]	1e ⁻¹³⁷
SSH-43		288	(XP767406)	
SSH-44	DQ465797	371	Hypothetical protein UM05244.1 [Ustilago maydis521] (XP761391)	1e ⁻¹⁶²
SSH-45	DQ465798	293	Unknown protein	1e ⁻¹⁷³
SSH-46	DQ465799	286	Unknown protein	1e ⁻¹⁶⁵
SSH-47	DQ465800	330	Unknown protein	1e ⁻¹⁶²
SSH-48	DQ465801	285	Unknown protein	1e ⁻¹⁵³
SSH-49	DQ465802	292	Unknown protein	1e ⁻¹⁶⁷
SSH-50	DQ465803	178	No homology ^b	
SSH-51	DQ465804	499	No homology	
SSH-52	DQ465805	404	No homology	
SSH-53	DQ465806	472	No homology	
SSH-54	DQ465807	478	No homology	
SSH-55	DQ465808	561	No homology	
SSH-56	DQ465809	578	No homology	
SSH-57	DQ465810	646	No homology	
SSH-58	DQ465811	377	No homology	
SSH-59	DQ465812	547	No homology	
SSH-60	DQ465813	293	No homology	
SSH-61	DQ465814	352	No homology	
SSH-62	DQ465815	368	No homology	
SSH-63	DQ465816	630	No homology	

bNo significant sequence homology found in genome, EST, and protein database.

Northern blot analysis (Pb)

Planta 2007 (in press)

Water-stress induced gene (Clone # 29, 36, 37, 38)

Cold stress-induced gene (Clone # 4, 13, 14)

ACC synthase/oxidase gene (Clone # 31)

Abiotic stress-induced gene (Clone # 28)

Metallothionein gene (Clone # 7)

EtBr stained RNA

Sequencing results (Hg)

- 87 clones corresponds to unigenes
- Clone # 31 had homology to type 2 metallothionein (MT)
- Clone # 252- 70 kD Heat shock cognate protein 3
- Clone # 4- ATFP6-metal ion binding protein

- 1. Vses-forward_016- gb|AAM94615.1|putative hydrolase [Glycine max] 333 7e-90
- 2. Vses-forward_031- ref[NP_190489.1]unknown protein [Arabidopsis thaliana] 58.5 7e-08
- 3. Vses-forward_032- ref|NP_195570.1|ATFP6 (FARNESYLATED PROTEIN 6); metal ion binding [Arabidopsis thaliana] 92.4 5e-18
- 4. Vses-forward_047- gb|AAG24883.1|ribulose-1,5-bisphosphate carboxylase small subunit rbcS2 [Glycine max] 206 6e-52
- 5. Vses-forward_048- emb|CAA68848.1|hin1 [Nicotiana tabacum] 186 1e-45
- 6. Vses-forward_063- dbj|BAA77604.1|plastidic aldolase NPALDP1 [Nicotiana paniculata] 394 1e-108
- 7. Vses-forward_064- gb|AAT80649.1|lipid transfer protein precursor [Malus x domestica]139 3e-32
- 8. Vses-forward_079- emb|CAA85354.1|alpha-1,4 glucan phosphorylase, L isoform precursor [Vicia faba var. minor] 353 7e-96
- 9. Vses-forward_080- gb|AAG34805.1|glutathione S-transferase GST 15 [Glycine max] 337 2e-91
- 10. Vses-forward_095- emb|CAB17075.1|cysteine proteinase precursor [Phaseolus vulgaris] 297 3e-79
- 11. Vses-forward_030- sp[O65194]RBS_MEDSA Ribulose bisphosphate carboxylase small chain, chloroplast precursor (RuBisCO small subunit) 276 6e-73
- 12. Vses-forward_045- emb|CAA32197.1|chlorophyll a/b-binding protein [Lycopersicon esculentum] 376 1e-103
- 13. Vses-forward_046- gb[AAG24882.1|ribulose-1, 5-bisphosphate carboxylase small subunit rbcS1 [Glycine max] 283 6e-75
- 14. Vses-forward_061- gb|AAC16403.1|early light-induced protein [Glycine max192 3e-48
- 15. Vses-forward_062- ref|NP_190490.1|unknown protein [Arabidopsis thaliana] 42.4 0.006
- 16. Vses-forward_043- emb|CAA96570.1|CP12 [Pisum sativum] 189 5e-47
- 17. Vses-forward_060- emb|CAA05979.1|adenine nucleotide translocator [Lupinus albus] 117 1e-25
- 18. Vses-forward_091- ref[NP_974774.1]HAP2A; transcription factor [Arabidopsis thaliana] 152 1e-35
- 19. Vses-forward_025- sp|P93508|CRTC_RICCO Calreticulin precursor 358 9e-98
- 20. Vses-forward_058- sp|022518|RSSA_SOYBN_40S ribosomal protein SA (p40)_170_1e-41
- 21. Vses-forward_089- emb|CAA45151.1|chloroplast Rieske FeS protein [Pisum sativum] 300 2e-80
- 22. Vses-forward_090- ref|NP_182172.1|unknown protein [Arabidopsis thaliana] 88.2 9e-17
- 23. Vses-forward_023- emb|CAA67696.1|23 kDa oxygen evolving protein of photosystem II [Solanum tuberosum] 260 1e-68
- 24. Vses-forward_055- ref|XP_467654.1|MutT/nudix-like [Oryza sativa (japonica cultivar-group)] 84.0 4e-15
- 25. Vses-forward_087- gb|AAD28640.2|geranylgeranyl hydrogenase [Glycine max] 372 1e-102
- 26. Vses-forward_037- ref[NP_186761.1]MTO1 (METHIONINE OVERACCUMULATION 1) [Arabidopsis thaliana] 155 6e-37
- 27. Vses-forward_085- ref|XP_469854.1|putative dehydrogenase precursor [Oryza sativa (japonica cultivar-group)] 293 3e-78
- 28. Vses-forward_003-emb|CAA33557.1|unnamed protein product [Pisum sativum] 124 8e-28
- 29. Vses-forward_020-emb|CAA43590.1|Type I (26 kD) CP29 polypeptide [Lycopersicon esculentum] 211 7e-54
- 30. Vses-forward_067-emb|CAB79860.1|putative zinc finger protein [Arabidopsis thaliana] 166 2e-40
- 31. Vses-forward_068-dbj|BAD18379.1|type 2 metallothionein [Vigna angularis] 110 2e-23
- 32. Vses-forward_083-ref|NP_177596.1|DNA binding [Arabidopsis thaliana] 88.6 7e-17
- 33. Vses-forward_084-emb|CAA32429.1|unnamed protein product [Arabidopsis thaliana] 43.5 0.002
- 34. Vses-forward_001-gb|AAM94806.1|rubisco activase alpha [Gossypium hirsutum] 105 5e-22
- 35. Vses-forward_002-emb|CAA81078.1|glycine hydroxymethyltransferase [Flaveria pringlei] 399 1e-109
- 36. Vses-forward_034-gb|AAQ72789.1|60S ribosomal protein L5 [Cucumis sativus] 358 1e-97
- 37. Vses-forward_050-dbj|BAB86847.1|elongation factor EF-2 [Pisum sativum] 183 2e-45
- 38. Vses-forward_066-gb|AAK25800.1|rubisco activase [Zantedeschia aethiopica] 43.9 0.002
- 39. Vses-forward_081-emb|CAA81082.1|glycine hydroxymethyltransferase [Solanum tuberosum] 408 1e-112
- 40. Vses-forward_031-dbj|D78130.1|Homo sapiens mRNA for squalene epoxidase, complete cds 89.7 6e-15
- **41.** Vses-forward_032-ref|NM_120019.1|Arabidopsis thaliana ATFP6 (FARNESYLATED PROTEIN 6); metal ion binding AT4G38580 (ATFP6) mRNA, complete cds 79.8 6e-12

42. Vses-forward_047-gb|AF303941.1|AF303941 Glycine max ribulose-1,5-bisphosphate carboxylase small subunit rbcS3 mRNA, complete cds 454 1e-124

43. Vses-forward_048-gb|AY279310.1|Malus x domestica enolase-like mRNA, partial sequence 63.9 9e-07

- 44. Vses-forward_063-gb/M97476.1/PEAALDIA Pisum sativum L. aldolase gene, 3' end cds 694 0.0
- 45. Vses-forward_064-gb|DQ122797.1|Medicago sativa clone QB12 lipid transfer protein precursor, mRNA, partial cds 105 1e-19
- 46. Vses-forward_080-gb|AC161864.9|Medicago truncatula clone mth2-69d21, complete sequence 256 9e-65
- 47. Vses-forward_095-dbj|AP006110.1|Lotus corniculatus var. japonicus genomic DNA, chromosome 1, clone:LjT39G11, TM0195b, complete sequence 500 1e-138
- 48. Vses-forward_014-emb/V00458.1|GMRUBP Glycine max gene encoding ribulose-1,5-bisphosphate carboxylase small subunit 240 3e-60

49. Vses-forward_030-gb|AF056315.1|AF056315 Medicago sativa ribulose-1,5-bisphosphate carboxylase small subunit mRNA, nuclear gene encoding chloroplast protein, complete cds 252 1e-63

- 50. Vses-forward_045-emb|X81962.1|PSLHAB P.sativum mRNA for type II chlorophyll a/b binding protein 400 1e-108
- 51. Vses-forward_060-emb|AJ003197.1|LAAJ3197 Lupinus albus mRNA for adenine nucleotide translocator 260 2e-66
- 52. Vses-forward_009-gb|AC125095.3|Mus musculus BAC clone RP24-179H12 from chromosome 14, complete sequence 52.0 0.003
- 53. Vses-forward_025-gb|U74630.1|RCU74630 Ricinus communis calreticulin mRNA, complete cds 466 1e-128
- 54. Vses-forward_058-emb|AJ006759.1|CAR6759 Cicer arietinum mRNA for ribosome-associated protein p40 216 3e-53
- 55. Vses-forward_089-dbj|AB025003.1|Cicer arietinum mRNA for plastoquinol-plastocyanin reductase, partial cds 317 2e-83
- 56. Vses-forward_090-gb|AC109247.14|Mus musculus chromosome 9, clone RP23-462C14, complete sequence 56.0 9e-05
- 57. Vses-forward_008-gb|U74630.1|RCU74630 Ricinus communis calreticulin mRNA, complete cds 513 1e-142
- 58. Vses-forward_087-gb[DQ013361.1]Lotus corniculatus var. japonicus geranylgeranyl hydrogenase (GGH) mRNA, complete cds 652 0.0
- 59. Vses-forward_005-gb|AF220405.1|AF220405 Vitis riparia transcription factor (Rev136-2) mRNA, complete cds 75.8 2e-10
- 60. Vses-forward_037-gb|AF097180.1|AF097180 Nicotiana tabacum cystathionine gamma-synthase precursor (metB) mRNA, complete cds 69.9 8e-09
- 61. Vses-forward_085-gb|BT009463.1|Triticum aestivum clone wr1.pk0004.c11:fis, full insert mRNA sequence 198 1e-47
- 62. Vses-forward_003-dbj|AB236819.1|Trifolium pratense RNA for putative PSII-P protein, partial cds, clone: C214 244 2e-61
- 63. Vses-forward_020-gb|BT014450.1|Lycopersicon esculentum clone 133776F, mRNA sequence 230 2e-57
- 64. Vses-forward_067-dbj|AP004913.1|Lotus corniculatus var. japonicus genomic DNA, chromosome 5, clone:LjT02A14, TM0072a, complete sequence 206 4e-50
- 65. Vses-forward_083-ref|XM_466397.1|Oryza sativa (japonica cultivar-group), mRNA 75.8 7e-11
- 66. Vses-forward_084-gb|AC129090.21|Medicago truncatula clone mth2-14i8, complete sequence 113 2e-22
- 67. Vses-forward_002-gb|M87649.1|PEASHMTA Pisum sativum serine hydroxymethyltransferase mRNA, complete cds 763 0.0
- 68. Vses-forward_034-dbj|AB049724.1|Pisum sativum ssa-15 mRNA for putative senescence-associated protein, complete cds 460 1e-126
- 69. Vses_06_A06_T3 gb|AAQ87663.1|translationally controlled tumor protein [Elaeis guineensis] 224 1e-57
- 70. Vses_06_A08_T3 gb|AAX94836.1|Major Facilitator Superfamily, putative [Oryza sativa (japonica cultivar-group)] 115 4e-25
- 71. Vses_06_A12_T3 sp[P27774|KPPR_MESCR Phosphoribulokinase, chloroplast precursor (Phosphopentokinase) (PRKase) (PRK) 64.7 1e-09
- 72. Vses_06_B02_T3 ref|NP_192718.1|RPS18C (S18 RIBOSOMAL PROTEIN); RNA binding / structural constituent of ribosome [Arabidopsis thaliana] 93.6 2e-18
- 73. Vses_06_C01_T3 gb|AAB36543.1|DnaJ-like protein [Phaseolus vulgaris] 52.0 7e-06
- 74. Vses_06_C07_T3 ref[NP_187886.2] oxidoreductase [Arabidopsis thaliana] 170 1e-41
- 75. Vses_06_C08_T3 sp[P34921|G3PC_DIACA Glyceraldehyde-3-phosphate dehydrogenase, cytosolic 219 2e-56
- 76. Vses_06_C10_T3 gb|AAM93434.1| 40S ribosomal S4 protein [Glycine max] 142 3e-33
- 77. Vses_06_C11_T3 gb|AAG33924.1| auxin-repressed protein [Robinia pseudoacacia] 169 5e-41
- 78. Vses_06_E08_T3 gb[AAS57914.1] 70 kDa heat shock cognate protein 3 [Vigna radiata] 343 6e-93

79. Vses_06_D03-g_025-1672 gb|DQ322696.1| Glycine max WRKY82 mRNA, complete cds 119 8e-24

- 80. Vses_06_D08_T3 gb|AAA65011.1| similar to Atriplex nummularia chaperone ANJ1 protein, Swiss-Prot Accession Number JQ2142 76.6 3e-13
- 81. Vses_06_B09_T3 emb|AJ749797.1| Photobacterium damselae subsp. piscicida trpB gene for putative transposase, clone pRDA16 50.1 0.005
- 82. Vses_06_C08_T3 gb[DQ355800.1] Glycine max glyceraldehyde-3-phosphate dehydrogenase (GAPC1) mRNA, complete cds 323 3e-85
- 83. Vses_06_C11_T3 gb|AY009094.1| Robinia pseudoacacia auxin-repressed protein mRNA, complete cds 375 1e-100
- 84. Vses_06_C12_T3 emb|AJ006764.1|CAR6764 Cicer arietinum mRNA for putative cytidine or deoxycytidylate deaminase, partial 176 1e-41
- 85. Vses_06_D03_T3 gb|AY109342.1| Zea mays CL3469_4 mRNA sequence 167 4e-38
- 86. Vses_06_D04_T3 dbj|AB089677.1| Prunus persica PpNRT1 mRNA for nitrate transporter, complete cds 107 5e-20

87. Vses 06 F08-g 054-1672 dbj[AB242265.1] Sesbania rostrata Srglu64 mRNA for beta-1,3-glucanase, complete cds 795 0.0

Northern blot analysis (Hg)

β-1,3-Glucanase gene (Clone # 110)

70 kD Heat shock cognate protein 3

Putative Rieske Fe-S protein precursor (# 47)

Glutathione S-transferase (Clone # 10)

WRKY82 (Clone # 135)

ATFP6 Metal ion binding protein (Clone # 4)

Type 2 metallothionein (Clone # 82)

Bioengineering of Plants for Efficient Remediation

 Arabidopsis transgenics constructed to express bacterial genes merB and merA. (PNAS 93, 1996)

 $merB \qquad merA$ $(CH_3)_2Hg ------ \rightarrow Hg^{2+} ----- \rightarrow Hg$

- Indian mustard transformed with *ATP Sulfurylase (APS)* genes demonstrate 4-fold increase in APS activity and accumulated 3X Se than the wild type.
- **Transgenic tomato** over expressing the bacterial gene

1-aminocyclopropane-1-carboxylic acid (ACC) deaminase demonstrated enhanced tolerance for and accumulation of Co, Cu, Ni, Pb and Zn (J. Biotech 81, 2000).

- **Transgenic tobacco** expressing *citrate synthase* showed enhanced tolerance to Al toxicity (Science 276, 1997).
- Transgenic Arabidopsis expressing phytochelatin synthase from wheat demonstrated enhanced accumulation of Cd (PNAS 100, 2003)

Sesbania Transformation

- Developed in vitro regeneration system using nodal explants
- Sesbania callus infected with Agrobacterium containing pCambia 1305
- pCambia has GUS gene which produces betaglucuronidase
- GUS histochemical assay to check gene expression.
- Expression confirmed by PCR

Sesbania callus showing transformation

GUS gene amplified from pCAMBIA 1305.1 plasmid

Sesbania Regeneration

General Conclusion

- Phytoremediation by Sesbania is effective against a wide variety of contaminants.
- Effective for sites with shallow contaminated soils.
- A type II metallothionein gene identified may be involved in heavy metal detoxification
- Pb and Hg in Sesbania also induced other stress related genes
- Slow process
- Interdisciplinary approach
- More research to manipulate metals accumulation efficiency of Sesbania.

ACKNOWLEDGEMENTS

Collaborators

Dr. J. Andersland, WKU Dr. K. Raghothama, Purdue U Dr. J. Jain, Univ. Notre Dam Dr. J. Gardea-Torresdey, UTEP Dr. D. Sarkar, UTSA Dr. R. Datta, UTSA

Research Associates

Dr. N. Sharma Dr. M. Israr

Graduate Students

- S. Cheepala
- T. Ruley
- A. Srivastava

Undergraduate Students

N. Bryant D. Starnes A. Small

Financial Support NSF-EPSCoR Ogden College