Remote Sensing of Lake Dynamics in the Context of Global Change: A Global Perspective

Yongwei Sheng UCLA Department of Geography

Global Lake Distribution from GLWD

Source: GLWD (Lehner and Doll, 2004)

☑ ~250,000 lakes (>0.1 km²)

- ☑ Largest group of lakes:
 - high-latitudes (> 45°N);
- ☑ Second largest:
 - 27 -- 42°N;
- ⊻

Complied from various sources (1 \cdot 1 to 2M):

- : 1 to 3M):
 - DCW (1970s to 1990s);
 - Arc World (1992);
 - WCMC Wetlands map -- World Conservation Monitoring Center (1993)

 \square Currently best available data sets.

Problems of GLWD

- \blacksquare A good reference:
 - 250k lakes;
 - 2.4 million km²;
 - 1.8% density.
- ☑ Miss a lot of small lakes:
- ☑ Not a systematic inventory;
- ☑ Not addressing lake dynamics.

Another global lake estimate (Downing et al, 2006):

- Lake abundance: >300 million lakes;
- Total lake area: 4.6 million km²;
- Lake area density: >3%.

Lake Dynamics

- ☑ Water & energy cycling;
- ☑ "measure, monitor, and forecast the US and global supplies of fresh water." (OSTP, 2004)

Global warming:

- How much have lakes changed?
- What are the mechanisms?
- What are the possible consequences?
- ☑ But, How?● Remote Sensing!

•

Our Current Critical Regions for Lake Dynamics Remote Sensing

 \blacksquare West Siberia (~ 0.5 M km²);

 \square Pan-Arctic (~ 40 M km²);

☑ Tibetan Plateau (~ 1.5 M km²);

☑ All remote, under-populated, climate-sensitive.

Local-Scale Arctic Lake Dynamics

☑ Studies have recently used <u>remote sensing</u>, <u>field work</u>, and <u>historical records</u> to examine Arctic/sub-Arctic lakes changes during recent decades:

- Osterkamp et al., 2000
- Jorgenson et al., 2001
- Yoshikawa and Hinzman, 2003
- Christensen et al., 2004
- Payette et al., 2004
- Stow et al., 2004
- Marsh et al 2005.

Most of them are done at local scale.Does lake dynamics exhibit a pattern?

Regional-scale Lake Dynamics in West Siberia

- ☑ Satellite-based inventory of an area > 0.5 million km².
- IP73 MSS imagery vs. 1997/98 RESURS imagery.

University of Texas at San An Inventory of ~10,000 large Siberian lakes (1973 - 1998)reveals lake growth in continuous permafrost but disappearance in discontinuous, isolated and sporadic permafrost

("Disappearing Arctic Lakes," Smith et al., Science, 2005)

Ground Confirmation

lake expansion (northern, continuous permafrost)

lake shrinking further south

 ☑ 125 disappeared lakes (> 0.4 km²) were detected!
 ☑ No new lakes.

October 19, 2007

and and the state

Permafrost

Mechanism for Arctic Disappearing Lakes

Disappearing Lakes

In summer, ice melts across much of the Arctic, forming thousands of lakes. Under each lake is a layer of permanently frozen ground, or permafrost. When the permafrost melts, the water seeps into the ground.

Permafrost

Permafrost

Rising Temperature

Credit: Nicolle Rager Fuller, NSF

Remote Sensing of Pan-Arctic Lakes

- ~200,000 lakes (sized 0.1 50 km², GLWD) northwards of 45°N
- ☑ Regional scale studies:
 - 5,400 km² lake change detection in western Arctic coast of Canada (Marsh et al, 2005);
 - 34,570 km² lake mapping in North Slope of Alaska (Frohn, Hinkel et al, 2005; Hinkel et al, 2007);
 - 515,000 km² lake change detection in West Siberia (Smith, Sheng et al., 2005).

Lake Changes at Pan-Arctic Scale

\blacksquare 45°N and north:

- Peak in the global lake distribution;
- 45°N: about the southern limit of permafrost zones;
- Coverage:
 - ✤73 million km², 1/7 of the Earth's surface;
 - •41 million km² of land, $\sim 1/4$ of the Earth's land surface.
- ☑ So far only <2.5% of the high-latitude land surface has been studied for lake change-detection.
- If "How have northern lakes responded to rising Arctic temperatures?"
- Arctic lake changes would have significant ramifications for hydrology, ecology, carbon cycle, and so on.

Requirements to Arctic Lake Remote Sensing

☑ Characteristics of Arctic lakes:

- Abundant in number;
- Small in size;
- Shallow in depth;
- Frozen most of the time;
- Low-relief landscapes.
- Requirements to remote sensing:
 - Many, high-resolution, summer images!
 - Pan-Arctic lake mapping requires ~1,800 scenes of cloudfree Landsat images acquired in summer season for each change detection episode.
 - Automation!

Critical Technologies and Automation

☑ Precise image co-registration;

Accurate lake mapping;

☑ Detailed change detection.

Hierarchical Lake Mapping

Global segmentation and local adjustment

Automated PIF-based Image Co-registration

PIF: pseudo invariant features

October 19, 2007

RMSE = 0.27 pixel

Before

After

University of Texas at San Antonio

October 19, 2007

MSS with TM

1974 MSS and 2002 ETM+ (0.24 pixel) Alaskan ACP (70.46°N, 155.25°W)

Multi-Decadal Lake Change Record

Expected Results from Pan-Arctic Studies

- Systematic inventory of high-latitude lakes;
- \blacksquare Metrics on lake dynamics.
- Science questions and Hypotheses:
 - "How have northern lakes and wetlands responded to rising Arctic temperatures, and what does their future hold with respect to continued warming in the region?"
 - High-latitude lakes are in a disequilibrium state since the 1970's.
 - Lake changes are significantly influenced by other factors besides climate, such as permafrost state.
 - The ultimate "endgame" for a hotter Arctic is a shift from above-ground to below-ground storage of water.

Global Lake Distribution

Largest group of lakes:
high-latitudes;
Second largest:
27 -- 42°N
Where are they?

University of Texas at San Antonio

October 19, 2007

Science Questions

- How do present-day lake areas compare with maximum lake extents during the GLP period in the late Pleistocene, as evidenced by paleo-shoreline data?
- ☑ How have areas and distributions changed over the past 30 years, an interval of pronounced warming in the region?
- ☑ What are the driving mechanisms underlying the observed lake changes?

October 19, 2007

Remote Sensing of Paleo Lake Changes

Greatest Lake Period (GLP): between ~40 and 25 ka BP;

Shrunk greatly since then;
 'How much have the Tibetan lakes shrunk since the late Pleistocene? ''
 Integrated RS/GIS approach.

University of Texas at San Antonio

October 19, 2007

October 19, 2007

offspring lakes

Dagze Co: A Typical Tibetan Lake

paleo shores

lacustrine sediments

243 km²

4466 m a.m.s.l.

Interactive Paleo Lake Mapping Environment

#1 Scroll (0.15642) #1 (R:R.G:G.B:B):ETM daze.tif File Overlay Enhance Tools PaleoLake Tools Window Setup Image and DEM Start a New Lake Pickup Paleoshore Points Report Points Set Tracing Envionment Trace Shorelines Save Work 1 #1 Zoom [3x] - O X Point Move Tool Point Info (LakeTool v1.0) Image (x,y): 667, 382 Map (x,y): -319899.54 E, 213287.58 S Meters (Lon, Lat): 83.500581 E, 34.874628 N Pickup Elevation Point Image Values: R=184, G =165, B =138 DEM Value: (6132, 4255, 5224) Meters Point Statistics #1 ROI Tool - • × Lake ID: 2 Number of Points: 6 Min Elevation: 4520 meters Max Elevation: 4523 meters Window: C Image C Scroll C Zoom @ Off Variation: 3 meters ROI Name Color Pixels Polygons Po Select Item from List: Region #1 Red 0/(^ Point 1: 4522 meters @ (2068, 246). Point 2: 4523 meters @ (2090, 436 Point 3: 4522 meters @ (1864, 674). Point 4: 4521 meters @ (1324, 821). Point 5: 4522 meters @ (1092, 215) Point 6: 4520 meters @ (1221, 125). < 100 Selected Item New Region Goto Stats Grow Pixel Delete Point 2: 4523 meters @ (2090, 436). Hide ROIs Show ROIs Select All OK | Cancel

October 19, 2007

Recovered paleo lake extent matching lake features

Paleo Lake Recovery Across the Plateau

☑ 653 contemporary lakes evolved from 173 paleo mega lakes.

 \square Total area shrinkage and water loss are estimated at 42,109 km² and 2,936 km³.

Spatial Pattern of Paleo Lake Change

- \blacksquare Zone 1: minor water-level drop (<20 meters).
- Zone 2: the moderate zone, with 20-60 meter water level drop.
- Zone 3: greatest water-level drop, up to 285 meters.

Recent Dynamics of Dawa Co

- (a) ETM image of 10/28/2000;
- (b) Lake change between 11/15/1976 MSS and 11/10/1990 TM image;
- (c) Lake change between 10/10/1990 TM and 10/28/2000 ETM+ image.

Challenges in Global Lake Dynamics

Adequate lake change detection:

- Precise image co-registration at sub-pixel accuracy;
- Accurate lake identification;
- Automation:
 - Accurate lake identification and sub-pixel accuracy co-registration;
- Satellite image acquisition;
- ☑ Addressing seasonal variation;
- ☑ Understanding the mechanism of lake changes.

Critical Techniques

- ☑ Algorithms have been tested in Arctic and Tibetan Plateau:
 - Image co-registration;
 - Lake identification;
 - Change detection.

Automation!

Challenge to satellite image acquisition

Suitable 1970's Landsat coverage is not comprehensive.

Possible Solutions

Making a large budget for projects;
Calling for institutional attention;
Coordinating among researchers;
Encouraging data sharing and trading.

Challenge to addressing seasonal variation

Seasonal variation vs. Long-term changes;

Possible Solutions

- \blacksquare Narrow the lake mapping episode to the best season;
- \blacksquare Avoid the snow melting and flood periods;
- ☑ Leave blanks rather than include images in unwanted seasons;
- Use overlap area of neighboring scenes to quantify seasonal variations.

Challenge to understanding the mechanism behind lake changes

☑ Involved various factors.

Possible Solutions

Collecting various data sources:

Topographic data;

- Environmental data;
- Hydrological data;
- Climatological data;
- ☑ Establishing GIS database;
- ☑ Using comprehensive GIS analysis;

GIS-Based Mechanism Analysis

Ocean

(Mac-Donald et al.,2006)

(Ray and Adams, 2001)

Ocean

Conclusions

Remote sensing of lake dynamics:

- On-going efforts;
- Global-scale;

A lot of work!

Acknowledgement:
NASA THP;
NSF Arctic Science Program;
NASA NIP.

