CAMEE TABLE TALK

WILDLAND FIRES SERIES: PART II

WITH DR. DAVID R. WEISE

APRIL 23, 2021 @ 12PM

Join Zoom: https://utsa.zoom.us/j/91436839639

“THE DATA YOU KNOW (OR THOUGHT YOU KNEW).”

ABSTRACT:

Most people are familiar with calculating the average of some quantity and do so without thinking about the statistical and mathematical theory and assumptions behind this simple calculation. The tools available to make this calculation do not challenge a user to think about the properties of the data. The data associated with wildland fire are diverse. These data describe quantities and properties of solids, liquids and gases. The data describe velocities, rates, counts and concentrations. They describe thoughts and values. The data are quantitative and qualitative; they are absolute and relative; and they have different scales of measurement (nominal, ordinal, interval and ratio). The characteristics of these diverse data can strongly influence the results of any data calculation and thus the conclusions that may be drawn. Matching the analysis to the data is just as important as designing the methods that are used to collect the data. Over Dr. Weise’s career in prescribed fire research as a forester, he has encountered several different types of data. This talk will provide some examples of these data and suggest some appropriate methods to analyze the data that may not be familiar.

RESEARCH BIO

David R. Weise has worked with the U.S. Forest Service in prescribed fire research in the southern and southwestern U.S. since 1980. He holds a B.S. in Forest Management and an M.S. in Forest Biometrics from Auburn University as well as a Ph.D. in Wildland Resource Science from the University of California at Berkeley. He has been involved in research studies determining the effects of prescribed burning on plant species composition and tree mortality, the effects of different fuel and environmental factors on fire spread and flames, characteristics of fire in live fuels, modeling of fire behavior and the production and composition of gases produced during prescribed burns. He has served on nearly 20 Ph.D. committees and over 10 M.S. committees at several U.S. and international universities.