Project No. ASF23-037-00 June 14, 2023

12821 W. Golden Lane San Antonio, TX 78249

PO Box 690287 San Antonio, TX 78269

> **P** 210.699.9090 **F** 210.699.6426

TBPE Firm F-3257

Ms. Corrina Green Associate Vice President Office of Real Estate, Construction, and Planning University of Texas at San Antonio One UTSA Circle San Antonio, Texas 78249

RE: Indoor Air Quality Assessment Institute of Texan Cultures 801 East Cesar E. Chavez Boulevard San Antonio, Bexar County, Texas

Dear Ms. Green:

Pursuant to your request on behalf of the University of Texas at San Antonio (CLIENT), **Raba Kistner, Inc. (RKI)** has completed an evaluation of indoor air quality (IAQ) conditions within the Institute of Texan Cultures (ITC) building, which is locally addressed at 801 East Cesar E. Chavez Boulevard within the City of San Antonio, Bexar County, Texas. On the basis of our communications and discussions with University of Texas at San Antonio (UTSA) staff members during an initial project meeting on May 11, 2023, the study scope was defined to include indoor air screening, sampling, and testing, as recommended to identify potential human-health concerns and facilitate recommendations to mitigate long-term exposure risks. In addition, the results from this survey were also compared to the air-quality criteria established by the American Alliance of Museums (AAM), which pertains to industry standards for museum curation. **RKI** engaged the services of AEHS, Inc. (AEHS), an environmental firm headquartered in San Antonio, Texas that specializes in indoor air quality studies and worker health and safety, to conduct the IAQ study as summarized herein. The following sections provide an overview of the IAQ assessment methods, findings, and recommendations.

A detailed discussion of the scope, methodology, and results of the IAQ study is presented in the attached technical report prepared by our sub-consultant, AEHS. The report was prepared for CLIENT and may not provide adequate information for other purposes or parties. If other parties wish to rely on this report, please have them contact us so that a mutual understanding and agreement of the terms and conditions for our services can be established prior to their use of this information.

SUMMARY OF IAQ ASSESSMENT RESULTS

Study Methods

As requested by the UTSA, a directed IAQ study approach was adopted to address sources of air contaminants within common areas and within the area that houses the museum archives. The study was conducted by AEHS under the direction of Mr. Ronald Bishop, an experienced Certified Industrial Hygienist (CIH) certified with the American Board of Industrial Hygiene (i.e., ABIH No. 814, expiration December 1, 2025), with assistance from **RKI**.

On the basis of similar project experience pertaining to determining baseline conditions, a broad range of air sampling is typically appropriate to adequately assess potential IAQ concerns. On the basis of information developed in conjunction with our initial reconnaissance visit and Mr. Bishop's experience conducting similar assessments at hospital facilities and other workplace settings, it was proposed that the AEHS/**RKI** field team spend up to two days onsite performing visual assessments and air sample collection activities within the ITC building. Field assessment and sampling activities included the following primary elements. The locations of respective indoor air sample stations within the ITC building are presented on *Appendix A – Diagram* within the attached survey report.

- Collect 12 representative air samples (for laboratory analysis) for 25 volatile organic compounds (VOCs) that are commonly associated with IAQ concerns using passive dosimeters at four locations on each floor.
- Evaluate the presence of VOCs in air using a calibrated photoionization detector (PID) at 20 measurement stations established within the ITC building, and four outside stations. The interior sample stations included common areas, display areas, and within the areas that house archived materials and collections.
- Evaluate the presence of ultra-fine particles and/or other contaminants in the air (PM 2.5, 5, 10) and particle dosimetry at the same measurement stations discussed above with respect to VOC testing.
- Utilize real-time, direct-read air monitoring equipment to evaluate oxygen, relative humidity, temperature, Carbon Monoxide (CO), Hydrogen Sulfide, and Methane at the same measurement stations discussed above with respect to VOCs/particle testing.

The specific passive dosimeters referenced above were selected to detect the following 25 VOC analytes that represent contaminants commonly found in building and furniture products: 1,1,1-trichloroethane; 1-butanol; 4-phenyl cyclohexene; acetone; benzene; butyl acetate; chloroform; cyclohexanone; ethylacetate; ethyl alcohol; ethylbenzene; heptanes; hexane; isopropyl alcohol; methyl alcohol; methyl ethyl ketone; methyl methacrylate; methylene chloride; perchloroethylene; styrene; tetrahydrofuran; toluene; trichloroethylene; and total xylenes.

Study Results and Recommendations

Data collection activities (passive dosimeters and direct-read measurements) within the ITC building were conducted on May 18 and 19, 2023, with passive dosimeters left in place for approximately 24 hours. As described in the preceding section, the IAQ study included an assessment of real-time indoor air measurements for targeted constituents that could pose a concern with respect to worker health and safety or general comfort (i.e., particulates, carbon dioxide, carbon monoxide, methane, hydrogen sulfide and VOCs, ventilation, mold spores, ozone, nitrogen dioxide, and Formaldehyde/Acetaldhyde. IAQ study results were generally considered with respect to permissible exposure limits (PELs) defined by OSHA that are defined to be protective of worker safety in addition to other indoor air threshold values established by the Leadership in Energy and Environmental Design (LEED) program that are used in conjunction with their building certification process and intended to promote a "healthy" worker environment. The AAM

Project No. ASF23-037-00 June 14, 2023

now relegates and references the criteria for indoor air to other organizations as referenced in the attached report.

A detailed discussion of study findings and tabulated air-quality measurements are provided in the attached AEHS report, but salient study findings are summarized below:

- In general, housekeeping within the ITC building was observed to be good with no perceptible odors other than those associated with archived materials. It was noted that some mechanical rooms and storage areas needed housekeeping attention (i.e., vacuuming, organizing, dusting).
- Particle dosimetry indicated a reduction of air particles (dust) within the ITC building when compared to measurements collected outside. The PM10 measured interior mean was 38.52 μg/m³ on referenced sampling day, which is below the LEED requirement of 50 μg/m³.
- Carbon dioxide readings were within the expected concentrations for an indoor environment ranging from 415 to 800 parts per million (ppm) with a mean of 500.2 ppm. These values are well below the OSHA PEL of 5,000 ppm. Worker exposure to levels below 1,000 ppm in indoor air is generally considered to be favorable. Minor detections of nitrogen dioxide (<0.0083) were detected, but well below the OSHA PEL of 5.0 ppm.
- No carbon monoxide or hydrogen sulfide was detected within the ITC building.
- Nine of the 12 passive dosimeter results for Formaldehyde/Acetaldyde were above the detection limit of 0.0035 ppm (i.e., measured concentrations ranging from 0.0037 to 0.0068 ppm). The LEED limit is 70 ppm and the OSHA PEL is 200 ppm.
- Analyses of the 25 additional VOC constituents sampled by passive dosimetry were non-detect or more than an order of magnitude below the OSHA PELs or LEED levels. As indicated, in the attached report, the following VOC constituents were detected: acetone (0.007 ppm; OSHA PEL 1000 ppm, no LEED level) and isopropyl alcohol (0.0047 to 0.0081 ppm, OSHA 400 ppm, LEED 3.5 ppm).
- No hydrogen sulfide or methane was detected indicating that sewer gasses are not entering the building. Minor concentrations of methane were detected ranging from 1 to 4 ppm within the archives and collections room on the 3rd floor which could indicate the presence of initial deterioration.
- The American Institute for Conservation (AICs) "Environmental Guidelines: Museum Climate in a Changing World" (accessed April 4, 2022), concluded that a relative humidity of 50% +/- 5% should be maintained with a temperature of 70°F +/- 2%. The recommended relative humidity was exceeded at nine locations and the recommended temperature of 70 °F +/- 2% was exceeded at eleven locations within the building.

Project No. ASF23-037-00 June 14, 2023

Based on the collective IAQ data generated as part of this study, indoor air quality conditions were not identified to pose an exposure concern for workers. The data results confirm that indoor air quality conditions within the worker breathing zone meet or exceed standards established by LEED and OSHA that are intended to promote a healthy workplace environment. On the basis of study findings, **RKI** and AEHS offer the following recommendations:

- Ensure that all occupants have access to the results of this study.
- Recommend that local relative humidity and temperature control continue and be expanded to all critical areas that contain archived materials.
- Ensure all filters for the Heating Ventilation Air Conditioning systems are properly sized and changed on a scheduled basis. Consider including 100 cfm negative air machines in critical areas. The units must contain high-efficiency particulate air (HEPA) filtration and should be placed in the recirculation mode.
- Consider installing charcoal filtration on the supply air diffusers to remove trace levels of VOCs.

CLOSING

We appreciate the opportunity to provide assistance to UTSA in this matter. If you have any questions regarding the information presented herein, please contact either of the undersigned at (210) 699-9090.

Very truly yours,

RABA KISTNER, INC.

Brian D. Strye Environmental Project Manager

BDS/RVK/srw

Attachment

Copies Submitted: Above (1 Electronic PDF Copy)

Richard V. Klar, P.G. Vice President

APPENDIX A

AEHS INDOOR AIR QUALITY REPORT

Indoor Air Quality Special Study

Institute of Texan Cultures

Prepared for Raba Kistner, Inc. On behalf of the University of Texas at San Antonio

> by AEHS, Inc. 4402 Center Gate San Antonio, Texas 78217 (210) 656-9300 www.aehs-sa.com

Indoor Air Quality Special Study Institute of Texan Cultures 801 East Cesar E. Chavez Blvd. San Antonio, Texas 78205

University of Texas at San Antonio

Preface

Indoor Air Quality (IAQ) has received considerable attention in the past; however, the majority of the attention was directed at comfort of the occupants. This was particularly true in the distant past when energy efficient buildings were constructed or older building remodeled to save heating and cooling costs. Terms such as "Sick Building Syndrome", "Tight Building Syndrome", "Sick House", and "Sick Schools" have become vogue. Currently, more attention is being paid to the health aspects that have resulted in many physical and psychological symptoms. This coupled with the realization that hypersensitive persons may have multiple chemical sensitivities and are in fact suffering from an illness have led to both research and applied studies. Additionally, there appears to be more allergic reactions to various microorganisms, such as fungi, than in the past.

Collection Materials are even more sensitive than individuals to adversity, without regard to the substrate – paper, wood, cloth, parchment, leather, film or other cellulose based photographs, and metal – from environmental concerns. While temperature and relative humidity appear to be the primary focus concerning the preservation of archival materials, other environmental issues such as fungi, particle deposition, and chemicals can hasten the deterioration and breakdown of the aforementioned substrates.

Executive Summary

A directed indoor air quality study was performed at numerous locations within the Institute of Texan Cultures.

It was determined that measurements/sampling would occur for the following: Dust (Particle Dosimetry, and Particulate Matter 1.0, 2.5, 5, and PM-10), Carbon Dioxide, Carbon Monoxide, Surface and Air Sampling, Formaldehyde, Hydrogen Sulfide, Methane, Mold, Oxygen, Volatile Organic Compounds, and Temperature and Relative Humidity Measurements. The rationale and explanation are provided within the body of this report.

In the past, the American Alliance of Museums and other institutional entities associated with archival collections such as the Northeast Document Conservation Center; the American Society of Heating, Refrigerating and Air-Conditioning Engineers; the American Institute for Conservation Green Resources Sustainable Practices for Conservation; the American Institute for Conservation; etc. have pursued central HVAC systems with zonal controls. However, this has been extremely difficult to achieve due to open display areas, multiple systems, and multiple requirements; therefore, recently there has been a trend for localized control for temperature and humidity. It should be noted that the AAM now relegates and references the criteria for indoor air to other organizations.

The overall appearance of the facility was very good and there were no perceptible odors – other than normally found with archival materials – with the exception of within some mechanical and non-archival storage areas.

Based on the measurements performed in this investigation, there does not appear to be a significant Indoor Air Quality (IAQ) issue concerning archival material.

There were areas where the temperature and humidity exceeded recommended levels.

Notwithstanding, that no concerning negative findings existed, there is always room for improvement; therefore, the following recommendations are made:

- Replace all water stained ceiling after repairing the cause of the water intrusion.
- Ensure all filters in the HVACs are properly sized and changed on a scheduled basis.
- Move away from large HVAC systems with untenable zonal controls to individual room controls as recommended by ASHRAE.
- Consider installing charcoal filters in critical areas.
- Consider installing negative air machines, with HEPA filters, in the critical areas and use in the recirculation mode to scrub (cleanse) the air.

1.0 INTRODUCTION.

1.1. General. In general, indoor air quality problems can occur in all types and ages of buildings; in newly constructed buildings; in renovated or remodeled buildings; and in old buildings. The buildings may be private residences, multi-storied office buildings, healthcare facilities, or industrial complexes. Problems in new, clean buildings are rarely related to microbial growth, since the physical structures are new; however, this may not hold true if the building materials were allowed to be exposed to weather and then not adequately dried prior to installation or the drainage around a new construction is not sufficient. On the other hand, the use of new building materials and/or furnishings may lead to off-gassing of chemicals in the glues, materials, or product itself. Older buildings that have not been properly maintained and operated may have problems with bioaerosols if parts of the building have been allowed to become reservoirs for microbial growth. Also, if inadequate outside air is provided, regardless of the age of the building, chemical and biological contaminants will build up to levels that can cause health effects in some occupants and certainly damage archival materials. This occurs by chemical reactions that lead to the formation of acids from pollutants from not only the building materials but also outside sources such as vehicular

exhaust products of combustion. It should be noted that that the literature is replete with documentation that suggests sudden changes in humidity will cause structural substrate damage with the resultant overall hastening of deterioration.

1.2. Chemicals.

1.2.1. Most of the health effects associated with indoor environments are concentrations of pollutants, which are much less than the OSHA Permissible Exposure Levels (PELs) (29 CFR 1910.1000). It is important to point out that the PELs are chemical-specific standards that are not only based on health effects but also on technological feasibility, cost restraints and a "healthy" worker exposed for a 40-hour work week. In the industrial workplace, hazards are minimized by the use of administrative and engineering controls and the use of personal protective equipment. The non-industrial environment, however, does not have these controls. Therefore, some professionals suggest the levels for routine non-industrial exposures should be 1/10 of the PEL. The establishment of the LEED[®] building certification process includes Indoor Air Quality as one of the seven topics where points can be accumulated. To this end, AEHS, Inc. will use the LEED[®] criteria to assist in the establishment of the quality of the indoor air.

1.2.2. In an office environment, the chemical exposures are associated with cleaning and janitorial compounds; air fresheners; personal items such as perfume, cologne, hair spray, after shave lotion, etc; paints; and other coatings (varnish, shellac, etc.). Also, office furnishings and office equipment such as printers, facsimiles, and copiers can produce carbonaceous ultrafine particles and are a source of irritation. Generally, sampling for Volatile Organic Compounds (VOCs) is undertaken in an office environment to determine potential contaminants. However, it is important to differentiate the VOCs when possible and not just group off gassing together as VOCs.

1.2.3. General non-industrial ventilation systems [such as office and home Heating, Ventilating, and Air Conditioning (HVAC)] are designed only to remove occupant-generated contaminants, such as carbon dioxide and odors, and provide tempered air for comfort. These types of systems are not designed to dilute multiple point sources of contaminants that are typically found in non-industrial workplaces. Unless adequate ventilation and source controls are utilized and adequately maintained, many of the chemical contaminants can concentrate to levels that induce symptoms. The possibility exists that synergistic effects occur, this is particularly true with high levels of carbon dioxide. There is evidence that high levels (greater than 1000 parts per million - ppm) of carbon dioxide exacerbate other problems. The source of the carbon dioxide is the exhaled air of occupants and the PEL is 5000 ppm. In addition to the exacerbation potential, measuring carbon dioxide is often a surrogate for effectiveness of the ventilation system to provide sufficient outside make-up air. This is precisely why the multiple consensus standard organizations are moving toward localized control for the storage of critical items and centralized systems for the display areas. In fact, the most recent guidance suggests that the minimum of outside air for occupants should be used.

1.2.4. Microbial Volatile Organic Compounds (MVOCs) are beginning to be used by IAQ investigators as indicators of microbial contamination. There are two primary reasons for addressing MVOCs production in buildings. First, to determine if any toxic levels are produced in sufficient amount to affect human health and second, to "fingerprint" a particular organism based on the MVOCs spectrum. Improved techniques for the collection and analyses of MVOCs are currently and continuously being developed. In the case of archival materials, the fungi themselves as well as the MVOCs may cause damage.

1.3. Comfort Balance.

1.3.1. Not only is there an increase in the variation of chemical sensitivity, but there is a wide variation in temperature and humidity comfort zones for different individuals. Experience indicates that occupant comfort complaints constitute a large portion of IAQ complaints. If occupants are too cold, too hot, too damp, or too dry, they consider the environment uncomfortable; therefore, they experience an IAQ problem.

1.3.2. The American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) provides guidance as to the proper combination of temperature and humidity to provide for effective temperatures that are comfortable. The comfort temperature range is 65° to 75° F. However, there are disagreements between researchers, architects, engineers, and health professionals concerning the recommended levels of humidity. Notwithstanding, the general consensus is that for biological activity to occur, the building surfaces must be above sixty (60) percent humidity. Typically, the humidity on building material surfaces will be approximately 10 - 15% less than the relative humidity in a space; however, the majority of the IAQ investigators still recommend spatial relative humidity levels to be below sixty (60) percent to ensure that surface humidities remain below sixty (60) percent. Notwithstanding, empirical data in south Texas indicates that it is necessary to keep the relative humidity near 50% to inhibit mold amplification indoors.

1.3.3. The American Institute for Conservation (AIC)'s "Environmental Guidelines: Museum Climate in a Changing World" (accessed 4 April 2022), concluded that a relative humidity of 50% +/- 5% should be maintained with a temperature of $70^{\circ}F$ +/- 2%. ASHRAE suggests 45% relative humidity while the Northeast Document Conservation Center discusses monitoring in detail, it does not provide prescriptive guidance.

1.4. Particulates.

1.4.1. Particles. Particles greater than 1 micron are often the cause of irritation and can exacerbate other problems particularly when associated with low humidities. Generally, larger particulates are a source of contamination that is often associated with the lack of proper filtering of re-circulated and make-up air. Accurate portable particle counters for very small particles are relative new technology that allows for direct comparisons at various locations

within a facility. Additionally, elevated particulate levels in the 0.5 to 10 micron range, when compared to the outside, could indicate potential mold growth.

1.4.2. Particulate Matter. Airborne particulate matter (PM) is not a single pollutant, but may be a mixture of many chemical species. It is a complex mixture of solids and aerosols composed of small droplets of liquid, dry solid fragments, and solid cores with liquid coatings. Particles vary widely in size, shape and chemical composition, and may contain inorganic ions, metallic compounds, elemental carbon, organic compounds, and compounds from the earth's crust. This also means that the particulates may contain small amounts of acids. Particles are defined by their diameter for air quality regulatory purposes. Those with a diameter of 10 microns or less (PM10) are inhalable into the lungs and can induce adverse health effects. Fine particulate matter is defined as particles that are 2.5 microns or less in diameter (PM2.5). Therefore, PM2.5 comprises a portion of PM10. However, based on the instrumentation, information for PM0.5, PM1.0, and PM5, was collected as well as PM2.5 and PM10.

2.0 BACKGROUND.

2.1. Mr. Brian Strye, Raba Kistner, Inc., on behalf of the University of Texas at San Antonio, contacted AEHS, Inc., concerning the potential need to conduct an Indoor Air Quality (IAQ) investigation. The concern was not associated solely with the occupants but with the archival material. A proposed approach was developed and accepted.

2.2. The investigation was under the overall direction of Ronald M. Bishop. Ron Bishop is a Certified Industrial Hygienist, a Certified Safety Executive, a Diplomate in Environmental Health, a Registered Environmental Professional and Environmental Manager, a Certified Environmental Safety Compliance Officer, a Texas Department of State Health Services (TDSHS) licensed Asbestos Consultant, a TDSHS Lead Risk Assessor and Lead Project Designer, a TDSHS licensed Mold Assessment Consultant, LEED[®] trained, and a Green Consultant.

2.3. AEHS is a TDSHS licensed Asbestos Consultant Agency, an Asbestos Phase Contrast Microscopy Laboratory, and an Asbestos Training Provider; a TDSHS licensed Lead Firm and Lead Training Provider; and a TDSHS licensed Mold Assessment Company and Mold Training provider.

2.4. All equipment used by AEHS has been calibrated to within the specifications required by the manufacturer and can be traced to the National Institute of Standards and Testing (NIST). Additionally, they were zeroed and/or had internal calibrations performed prior to testing.

2.5. All samples were collected at a height of three (3) to six (6) feet unless specific to the task which dictated otherwise.

3.0 APPROACH.

3.1. General.

It was determined that measurements/sampling would occur for the following: Dust (Particle Dosimetry and Particulate Matter 1.0, 2.5, 5.0, and PM-10), Carbon Dioxide, Carbon Monoxide, Aldehydes, Hydrogen Sulfide, Methane, Mold, Nitrogen Dioxide, Oxygen, Volatile Organic Compounds, and Temperature, and Relative Humidity Measurements. The rationale and explanation are iterated below if not described elsewhere.

Particulates:

Dosimetry - 0.3 micron, 0.5 micron, 1.0 micron, 2.5 microns, 5.0 microns, and 10.0 microns. These measurements assist in the mold evaluations (spore sizes) as well general source identification. Discernment for 1.0, 2.5, 5, and 10 PM allows comparison to other criteria.

Carbon Dioxide:

Carbon dioxide measurements are used as a surrogate to determine if a sufficient or excess quantity of outside air is being provided. High levels of carbon dioxide can also exacerbate issues with other irritants within the workplace.

Carbon Monoxide:

The location of the facility is very near a main interstate highway, near a sports arena, and downtown; therefore, during time of thermal inversions, there is a high probability that vehicular traffic will contribute to elevated levels of carbon monoxide and other products of combustion.

Formaldehyde:

Passive Dosimetry for the analytes of formaldehyde (building material and furnishings off-gassing) and specifically the panel for acetaldehyde was used. Office furniture made of pressed wood may contain a residual of formaldehyde from the manufacturing process. Additionally, aldehydes are often associated with diesel powered internal combustion engines.

Hydrogen Sulfide:

Hydrogen sulfide is produced with rotting vegetation, decaying/decomposing sewage, and deterioration of cellulose and organic substrates.

Methane:

Methane is produced with rotting vegetation and decaying/decomposing sewage, and deterioration of cellulose and organic substrates.

Nitrogen Dioxide:

Oxides of Nitrogen are produced as products of combustion but readily transform to Nitrogen Dioxide; therefore, Nitrogen Dioxide levels were measured using passive dosimeters.

Oxygen:

Normal atmospheric oxygen ranges from 19.5 to 23.0 % while 21% is considered normal; however, oxygen deficiency can exist above 19.5% depending on other conditions. Oxygen was measured throughout.

VOCs:

The specific passive dosimeters were selected to detect twenty-five analytes (1,1,1-trichloroethane, 1butanol, 4-phenyl cyclohexene, acetone, benzene, butyl acetate, chloroform, cyclohexanone, ethylacetate, ethyl alcohol, ethylbenzene, heptanes, hexane, isopropyl alcohol, methyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, methyl methacrylate, methylene chloride, perchloroethylene, styrene, tetrahydrofuran, toluene, trichloroethylene, and xylenes). A direct reading Photoionization Detector (PID) was also used throughout the area. The PID provides total VOCs and does not differentiate.

Ventilation:

Limited discussions were held with the individuals responsible for operating the HVAC as well as site observations at a number of mechanical rooms.

Temperature and Relative Humidity:

Temperature and Relative Humidity measurements were made at all locations where particle dosimetry occurred.

3.2. The specific locations measured/sampled are depicted on the Diagram at Appendix A.

4.0 FINDINGS and DISCUSSIONS.

4.1. General Observations. Photographs are at Appendix B.

4.1.1. The overall appearance of the facility was very good; however, some mechanical rooms and storage areas need housekeeping attention.

4.1.2. There were no perceptible odors other than those associated with archival materials.

4.1.3. The sampling/measurements were performed on 18 and 19 May 2023 with the passive dosimeters left in place for approximately 24 hours.

4.2. Specifics.

4.2.1. Particulates.

• The particulate data is at Appendix C with the statistics depicted in the Table 1, Page 8.

			1			
Location	0.3	0.5	1.0	2.5	5.0	10.0
Outside Mean	113,483	7,065	2,454	1,253	210	35
Interior Mean	18,420	1,360	435	269	83	30
Outside Maximum	120,485	8,387	2,561	1,253	241	44
Interior Maximum	27,771	2,221	1,133	810	232	101

Table 1Particulates(microns – counts)

- For the smaller particles, there was a magnitude reduction from the outside, however, the reduction in the larger sizes was significantly reduced and in some cases there were more larger particles in the interior.
- The particulate matter levels are shown in Table 2, below.

Table 2 Particulate Matter (µg/m³)

Location	PM0.5	PM1.0	PM2.5	PM5.0	PM10.0	Total
Exterior Mean	3.36	4.91	10.99	41.54	82.64	98.82
Interior Mean	0.54	0.81	1.89	8.44	24.56	38.52

- The PM 10 LEED requirement being $50 \,\mu g/m^3$. Therefore, the interior would have qualified as a "green building".
- The other Particulate Matter measurements are reflected in Appendix C.

4.2.2. Carbon Dioxide.

- The results of the direct reading measurements are at Appendix D.
- The carbon dioxide levels were unremarkable and what would be expected.

4.2.3. Carbon Monoxide.

- The results of the direct reading measurements are at Appendix D.
- The carbon monoxide levels were at zero (0) for all indoor measurements.
- Products of combustion from vehicles do not appear to be entering the interior environment; however, during a thermal inversion, the situation would most likely change. This is particularly probable because of the location near vehicular traffic.

4.2.4. Formaldehyde/Acetaldehyde.

- See Appendix E for the results of the passive dosimetry.
- Nine (9) of the twelve (12) passive dosimeter results were above the detection limit of 0.0035 ppm while the LEED limit is 70 ppm with the OSHA PEL being 200 ppm.
- Formaldehyde will react with other materials to create formic acid which is very destructive to collections; however, at the level measured within the ITC, it is likely that the impact is minimal.

4.2.5. Hydrogen Sulfide.

- The results of the direct reading measurements are at Appendix D.
- The hydrogen sulfide levels were at zero (0) for all measurements.
- Sewer gases do not appear to be entering the office environment.

4.2.6. Methane.

- The results of the direct reading measurements are at Appendix D.
- Some methane levels were detected in the storage areas albeit very low. Notwithstanding this could indicate the presence of the initial deterioration.

4.2.7. Nitrogen Dioxide.

• A few – three (3) – spot check samples were collected for nitrogen dioxide which were less than the detectable limit of 0.0083 ppm.

4.2.8. Volatile Organic Compounds (VOCs).

- See Appendix E, for the results of the passive dosimetry.
- The analyses of the twenty-five (25) analytes which were sampled via passive dosimetry - paragraph 3 above, were at or below the respective detectable limits with the exception of Isopropyl Alcohol in all samples and Acetone on the second floor east.
- All results were extremely low and would not impact personnel nor archival materials.
- The detected levels were multiple magnitudes below OSHA PELs.

4.2.9. Temperature and Relative Humidity.

- See Appendix F for a full table of the results.
- Table 3, Page 10, depicts the statistics for Temperature and Relative Humidity.

Table 3 Temperature and Relative Humidity Statistical Summarization

Location	Me	ean	Maxi	mum	Mini	mum	Std	Dev
Location	Temp	RH	Temp	RH	Temp	RH	Temp	RH
Outside	83.9	57.8	89.5	66.1	78.8	49.5	5.7	8.8
Inside	Inside 71.9 52		78.3	61.6	63.6	42.9	4.0	6.0

• The recommended 50% + -5% was exceeded nine (9) times within the building.

• The recommended 70 °F +/- 2% was exceeded eleven (11) times within the building.

5.0 CONCLUSIONS.

5.1. Based on the measurements performed in this investigation, there does not appear to be an Indoor Air Quality (IAQ) issue even for an individual with a chemical sensitivity.

5.2. VOCs did not represent a concern for personnel nor archival material.

5.3. Maintenance and filter changing associated with the air handlers need attention. This may be the cause of the dirt on the supply diffusers and ceiling as depicted in the photographs.

5.4. The minimal presence of methane could indicate the initiation of deterioration of archival material.

5.5. Continue to move away from large HVAC systems with untenable zonal controls to individual room controls as recommended by ASHRAE.

5.6. The AAM now relegates and references the criteria for indoor air to other organizations as referenced herein.

6.0 RECOMMENDATIONS.

6.1. Ensure that all occupants have access to the results of this study.

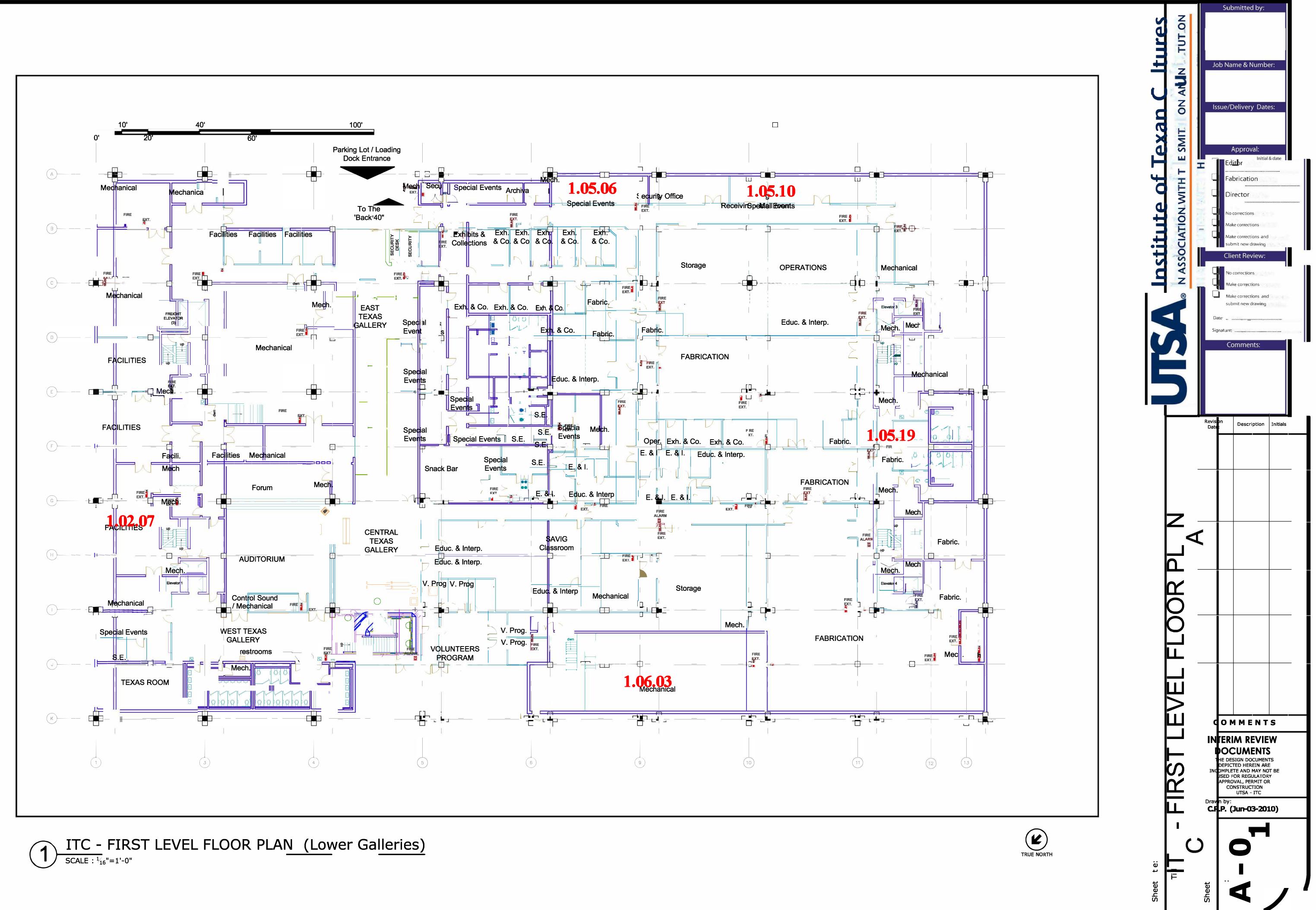
6.2. Recommend that <u>local</u> relative humidity and temperature control continue and be expanded to all critical archival materials areas.

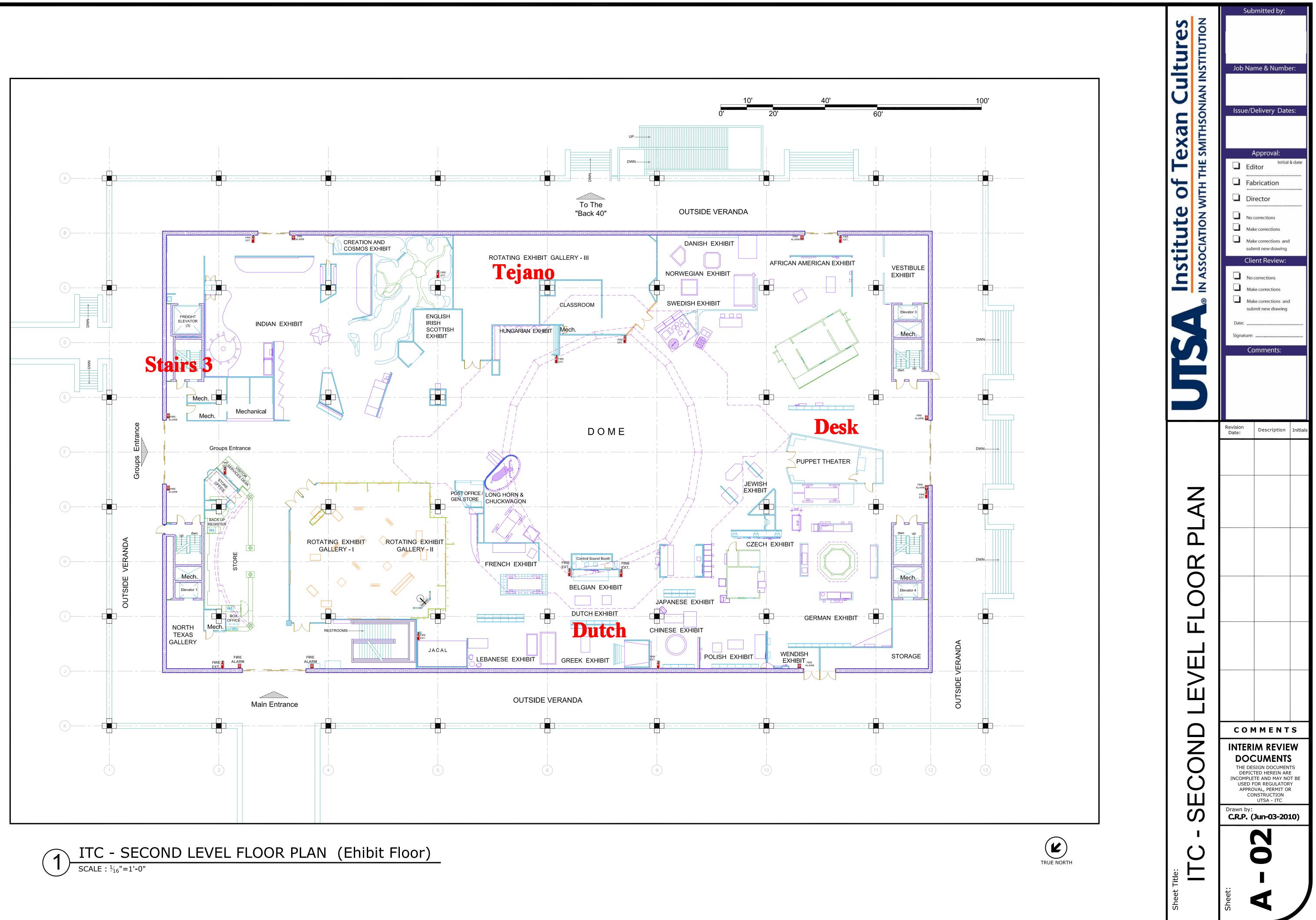
6.3. Replace all water stained ceiling after repairing the cause of the water intrusion.

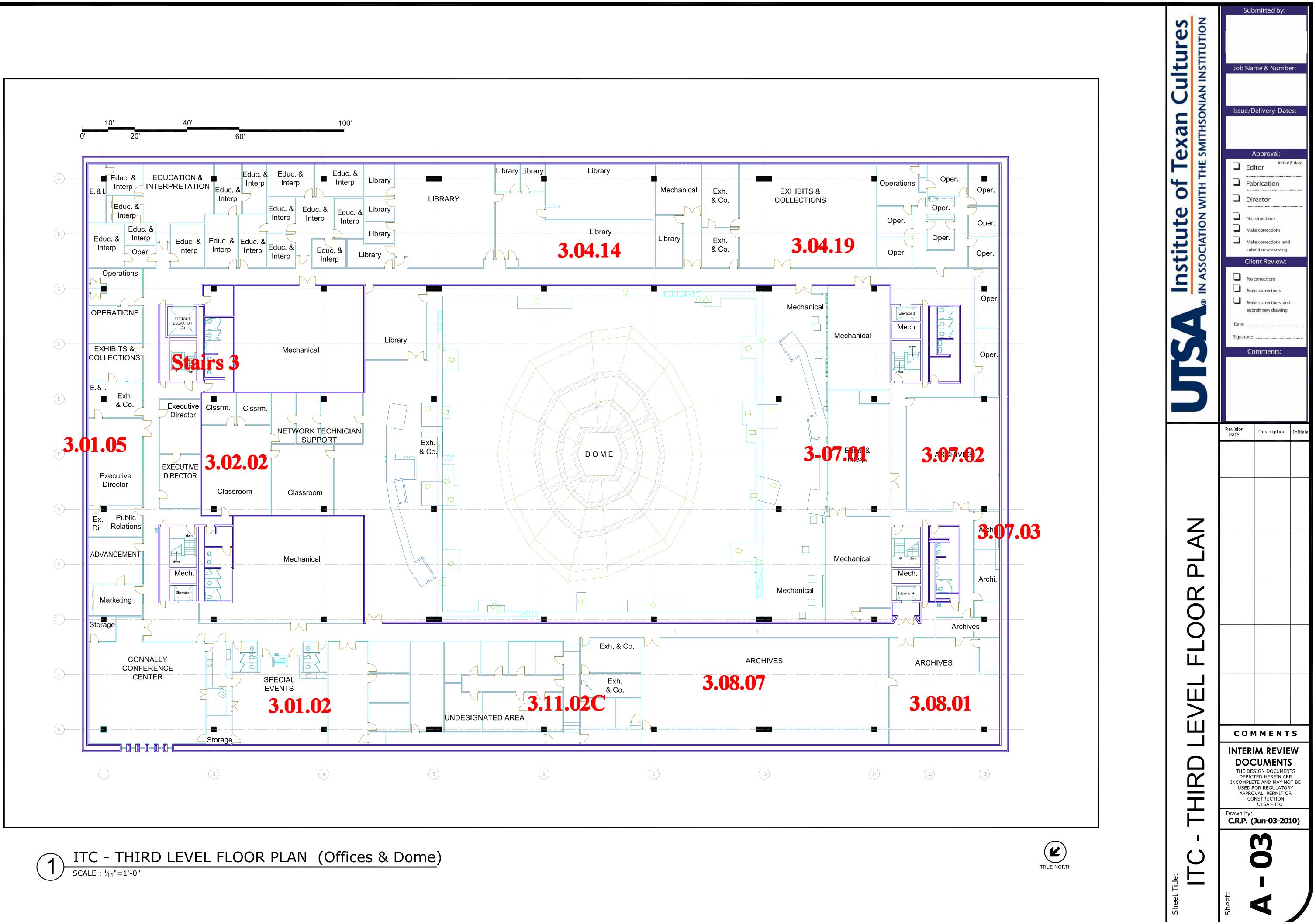
6.4. Ensure all filters in the HVACs are properly sized and changed on a scheduled basis.

6.5. Consider including 100 cfm negative air machines in critical areas. The unit must contain HEPA filtration and placed in the recirculation mode.

6.6. Consider installing charcoal filtration on the supply air diffusers to remove minute levels of VOCs.


7.0 DISCLAIMER.


This report of findings is given for the sole benefit of the aforementioned client (s). The client expressly confirms their understanding that the conclusions/recommendations stated in this report are limited to and based solely upon the scope of the assignment, and samples and field measurements taken. In addition, the client understands that any field observations contained herein reflect the conditions present on the date and time of inspection. No representations or warranties are made or may be implied as to the validity of their applicability to any other days or times.


Omeestinh

Ronald M. Bishop, MPH, CIH ABIH No. 814, Expiration December 1, 2025 8 June 2023

Appendix A Diagram

Appendix B Photographs

Institute of Texan Cultures 801 East Cesar Chavez Blvd. San Antonio, Texas

1. 1st Floor North

2. 1st Floor South

3. 2nd Floor East

4. 1st Floor West

5. 3rd Floor North

6. 3rd Floor East

7. Room 3.02.04, Dirt and limited mold

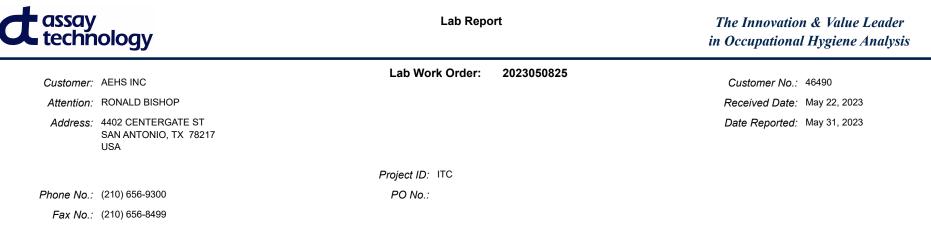
8. Room 3.02.04, Dirt

9. Deposit Library, Water Stain

10. AH 1, Improperly seated filters

11. AH 1, Too heavy laden before changing

12 AH 1, Not properly maintained


Appendix C Particulates

—	A	В	С	D	E	F	G	Н	I	J
1	Instrument Model: HH	—	0	0	-	1	ų			
2	Instrument Serial #: 2	00944001								
3	Downloaded On: 5/21	/2023 10:19:31								
4	Particle Data: Differe	ntial								
5	Particle Density: 2.50	0 g∕ml								
6	Data Duration: 5/18/	2023 09:04:46 to 5/18/2023 10:47:2	7							
7	Timestamp	Location	0.3 micron	0.5 micron	1.0 micron	2.5 micron	5.0 micron	10.0 micron	Temp	Rel Hum
8		(Name)	(Counts)	(Counts)	(Counts)	(Counts)	(Counts)	(Counts)	(F)	(%)
9	5/18/2023 09:04:46	Outside East	108396	7554	2360	1143	193	31	89.5	50.8
10	5/18/2023 09:08:48	Outside North	110758	7957	2509	1259	222	44	88.1	49.5
11	5/18/2023 09:11:55	Outside West	120485	8387	2561	1403	241	30	79.3	64.6
12	5/18/2023 09:15:41	Outside South	114292	7963	2385	1208	187	35	78.8	66.1
13		Average	113482.75	7965.25	2453.75	1253.25	210.75	35.00		
14		Maximum	120485.00	8387.00	2561.00	1403.00	241.00	44.00		
15		Minimum	108396.00	7554.00	2360.00	1143.00	187.00	30.00		
16										
17	5/18/2023 09:20:44	1st Floor East(1.02.07)	23753	1693	408	235	74	33	73.9	48.6
18	5/18/2023 09:36:02	1st Floor North (1.06.03)	13185	1577	596	390	136	62	78.3	47.9
19	5/18/2023 09:38:11	1st Floor West(1.05.19)	17535	1245	152	14	0	0	77.8	44.2
20	5/18/2023 09:40:17	1st Floor South(1.05.010)	19713	1368	215	46	8	3	75.8	46.6
21	5/18/2023 09:44:02	2nd Floor East, Dest/Doors	24277	2071	844	640	202	62	72.4	59.0
	5/18/2023 09:48:42	2nd Floor North, Tejano	27771	2086	789	495	171	66	71.9	60.8
23	5/18/2023 09:51:16	2nd Floor East, Stairway 3 & 4	20078	1327	350	173	37	11	73.4	55.6
24	5/18/2023 09:54:29	2nd Floor South, Dutch	21761	1681	506	338	104	24	72.4	58.0
25	5/18/2023 09:56:35	3rd Floor East, 3.01.05	20010	1365	329	193	51	22	72.9	56.1
	5/18/2023 10:01:27	3rd Floor North, 3.04.14	22614	2221	1133	810	232	101	74.4	55.6
27	5/18/2023 10:04:18	3rd Floor West, 3.07.02	13486	945	379	265	90	38	73.9	46.9
28	5/18/2023 10:08:11	3rd Floor South 3.12.04C-1	12693	1127	510	545	191	51	70.0	46.6
	5/18/2023 10:10:17	3rd Floor Deposit Room (3.07.02)	10787	605	112	36	8	15	65.6	42.9
	5/18/2023 10:12:46	3rd Floor (3.08.01)	13992	1572	668	454	118	42	67.0	50.0
• •	5/18/2023 10:15:10	3rd Floor (3.08.07)	12451	743	151	26	7	2	63.6	49.2
	5/18/2023 10:22:42	Gov Dolth Briscoe Jr (3.12.08)	18941	800	119	22	6	3	70.0	59.8
	5/18/2023 10:35:43	Collection (3.04.19)	12402	664	142	76	24	15	65.6	47.7
_	5/18/2023 10:41:06	Collection (3.02.04)	25154	1513	392	168	49	15	70.5	61.6
	5/18/2023 10:43:08	Collection (3.02.02)	23489	1797	695	353	113	32	75.3	57.2
-	5/18/2023 10:47:27	Collection (3.07.01)	14310	794	216	100	32	7	72.9	49.2
37		Average	18420.10	1359.70	435.30	268.95	82.65	30.20	73.9	53.1
38		Maximum	27771.00	2221.00	1133.00	810.00	232.00	101.00	89.5	66.1
39		Minimum	10787.00	605.00	112.00	14.00	0.00	0.00	63.6	42.9
40		Standard Deviation	5176.56	492.27	281.87	229.36	73.09	27.00	6.2	6.6

Appendix D Direct Reading Instrument Results **Direct Reading Instruments**

ation Oxy		Carbon Monoxide (ppm)	Hydrogen Sulfide (ppm)	Carbon Dioxide (ppm)	VOCs (ppb)
20		2	0	430	0
20	9 0	3	0	436	35
20	9 0	5	0	420	65
20.	9 0	4	0	415	0
07) 20.	9 0	0	0	462	52
.06) 20.	9 0	0	0	806	0
19) 20.	9 0	0	0	481	0
.03) 20.	9 0	0	0	460	0
x) 20.	9 0	0	0	460	0
uno) 20.	9 0	0	0	512	0
way 3) 20.	9 0	0	0	480	0
ch) 20.	9 0	0	0	464	0
20.	9 0	0	0	570	0
.14) 20.	9 0	0	0	520	0
03) 20.	9 0	0	0	470	0
02C) 20.	9 1	0	0	502	7
07.02) 20	9 0	0	0	517	1
20.	9 1	0	0	461	5
07) 20.	9 1	0	0	468	0
(3.12.08) 20	9 0	0	0	450	8
20.	9 3	0	0	488	3
20.	9 4	0	0	463	18
20.	9 0	0	0	484	0
20	9 0	0	0	486	0
nly					
Minimum	20.9 0	-	0		0
Maximum	20.9 4		0	806	52
Mean	20.9 0.5		0	500.2	4.7
Mode	20.9 0	-	0	460	0
Median Standard Deviation	20.9 0		0	480.5	0 12.0
Standard Deviation	0.0 1.1	1 0.0	0.0	77.5	

Appendix E Passive Dosimetry Results

Exposure results are the average concentration for the period of time monitored. '<' means the result is 'less than the RptLmt'. RptLmt = Reporting Limit. The results relate only to the items tested. Unless noted below, samples were received in acceptable condition, all applicable quality control were within method specifications, lab blanks were subtracted before a result was reported, and any customer supplied field blanks were not subtracted from sample results. The molar volume at 25 C (24.45 L/mole) was used to calculate parts per million, ppm. Air concentrations reported are based upon field sampling information provided by the customer. For assistance with the content of this report, please visit the Customer Support section of our web site at http://www.assaytech.com or contact Technical Support at 1-800-833-1258. For details of significant method modifications go to www.assaytech.com/methmod.

					Qu	antity Four	ıd	Sam	•	Co	centration
Lab Lab Date Sample ID Code Sampled Clie	ent Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found	Units
23026068 ATOH 05/18/2023 DEF	POSIT LIBRARY 3.07.02	571A	3H23 - QG12334								
				FORMALDEHYDE	0.13	0.10	UG	23.3	1440	0.0044	PPM
Analyzed By: JZATCHOK	Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023							
23026069 ATOH 05/18/2023 2NE	D FLOOR WEST	571A	3H23 - QG12361								
				FORMALDEHYDE	0.13	0.10	UG	23.3	1440	0.0046	PPM
Analyzed By: JZATCHOK	Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023							
23026070 ATOH 05/18/2023 3RE	D FLOOR EAST	571A	3H23 - QG12193								
				FORMALDEHYDE	<	0.10	UG	23.3	1440	<	0.0035 PPM
Analyzed By: JZATCHOK	Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023							
23026071 ATOH 05/18/2023 1ST	FLOOR SOUTH	571A	3H23 - QG12757								
				FORMALDEHYDE	0.20	0.10	UG	23.3	1440	0.0068	PPM
Analyzed By: JZATCHOK	Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023							
23026072 ATOH 05/18/2023 1ST	FLOOR EAST	571A	3H23 - QG12652								
				FORMALDEHYDE	0.14	0.10	UG	23.3	1440	0.0049	PPM
Analyzed By: JZATCHOK	Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023							
23026073 ATOH 05/18/2023 1ST	FLOOR WEST	571A	3H23 - QG13714								
				FORMALDEHYDE	0.14	0.10	UG	23.3	1440	0.0049	РРМ

Page 1 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

Lett Note Weight in Link Note Weig		Customer				Lab Work Order:	2023050825		Custom	ar No :	16190				
Address: Bays-Birstrageneration of the series of the s												2023			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-				
Point Point Point Party in the regime Par		Address	SAN AN							ontea.	way 51,	2023			
Baik in the second of the sec						Project ID: ITC									
\underline{Lab} <t< th=""><td>P</td><td>hone No.</td><td><u>:</u> (210) 65</td><td>6-9300</td><td></td><td>PO No.:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	P	hone No.	<u>:</u> (210) 65	6-9300		PO No.:									
Lab Data		Fax No.	; (210) 65	6-8499											
Sample D Out Sample D Out Media Media Media Media Media kol (solid with weight of the second weight of the se								Q	uantity Fou	nd	Sam		Co	ncentratio	n
232200 ATM 30 H 1912 a b 1918 a b 190 K NORTH 71A 3H23 - QG1243 Approved Dr. S253203 PRMALDEHYDE Approved Dr. S3112023 \mathcal{C}				Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)		Found		Units
Analyzed by LeV by LeV by LeV by Analyzed by SEXD 4 Analy	Analyzed By:	JZATCHOK		Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023								
Analyzed By: JZCH UK Analyzed On: S252023 Approved By: BEVING <td>23026074</td> <td>ATOH (</td> <td>)5/18/2023</td> <td>3RD FLOOR NORTH</td> <td>571A</td> <td>3H23 - QG12473</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	23026074	ATOH ()5/18/2023	3RD FLOOR NORTH	571A	3H23 - QG12473									
23026075 ATCH 05/182/023 2ND FLOOR SOUTH 571A 3H23-QG1220 Approved By: BEWING Approved Dy: S51/2023 0.11							FORMALDEHYDE	<	0.10	UG	23.3	1440	<	0.0035	PPM
Analyzed B: XEAK WARK Analyzed D: SZG2007 Analyzed D:<	Analyzed By:	JZATCHOK		Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023								
And year by LATCH WIND And year by LATCH WIND AND WIND WIND WIND WIND WIND WIND WIND WI	23026075	ATOH (05/18/2023	2ND FLOOR SOUTH	571A	3H23 - QG12202									
23026076 ATOH 05/18/2023 2ND FLOOR EAST 57/A 3H23 - QG12814 PORMALDEHYDE Analyzed By: JZATCHOK Analyzed On: 5/25/2023 Approved By: BEWING Approved On: 5/31/2023 PA				Applyzed Opt 5/25/2022				0.11	0.10	UG	23.3	1440	0.0039		РРМ
Analyzed B: Analyzed O:: 5252023 Approved By: BEWING Approved By: BEWING Approved D:: 5312023 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <	Analyzeu by.	JZAICHUK		Analyzed On. 5/25/2025		Approved by. BEWING	Approved Off. 5/31/2023								
Analyzed B:Analyzed O::: 5/26/203Approved By: BEWINGApproved By: BEWINGApproved By: BEWINGApproved D::: 5/21/203 \mathbf{A} $$	23026076	ATOH (5/18/2023	2ND FLOOR EAST	571A	3H23 - QG12814			0.10		22.2	1440		0.0025	DDM
23026077 ATCH 05/18/2023 IST FLOOR NORTH 571A 3H23 - QG13037 FORMALDEHYDE 0.11 0.11 0.10 23.3 H40 0.0037 PPM Analyzed B: JZATCHOK Analyzed On: 5/25/2023 Approved By: BEWING Approved On: 5/31/2023 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11	Analyzed By:	JZATCHOK		Analyzed On: 5/25/2023		Approved By: BEWING		Ì	0.10	UG	23.5	1440		0.0035	FFW
Analyzed By JATCH WAnalyzed Discrete WireAnalyzed By SEWINGFORMALDEHYDE Approved By: SEWING 0.01000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 $0.00000000000000000000000000000000000$															
Analyzed By: ZATCH WAnalyzed On: 5/2/2023Approved By: BEWINGApproved By: BEWINGApproved Dy: S/2/2023Approved By: BEWINGApproved Dy: S/2/2023Approved By: BEWINGApproved Dy: S/2/2023Approved Dy: S/2/2023 <t< th=""><td>23026077</td><td>ATOH (</td><td>05/18/2023</td><td>1ST FLOOR NORTH</td><td>571A</td><td>3H23 - QG13037</td><td>FORMALDEHYDE</td><td>0.11</td><td>0.10</td><td>UG</td><td>23.3</td><td>1440</td><td>0.0037</td><td></td><td>РРМ</td></t<>	23026077	ATOH (05/18/2023	1ST FLOOR NORTH	571A	3H23 - QG13037	FORMALDEHYDE	0.11	0.10	UG	23.3	1440	0.0037		РРМ
Analyzed By: Analyzed On:: Status Analyzed On:: Status <td< th=""><td>Analyzed By:</td><td>JZATCHOK</td><td></td><td>Analyzed On: 5/25/2023</td><td></td><td>Approved By: BEWING</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Analyzed By:	JZATCHOK		Analyzed On: 5/25/2023		Approved By: BEWING									
Analyzed By: Analyzed On:: Status Analyzed On:: Status <td< th=""><td>22026079</td><td></td><td>15/18/2023</td><td></td><td>571 \</td><td>3H23 OC12456</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	22026079		15/18/2023		571 \	3H23 OC12456									
23026079 ATOH 05/18/2023 2ND FLOOR NORTH 571A 3H23 - QG13261 FORMALDEHYDE 0.14 0.14 0.16 U 23.3 1440 0.0050 PPM Analyzed By: ZATCH Analyzed On: 5/25/2023 Analyzed On: 5/25/2023 Approved By: BEWING Approved On: 5/31/2023 0.14 0.10 UG 23.3 1440 0.0050 PPM 23026000 ATOH 05/18/2023 VD FLOOR SOUTH 525 2.323 - QE24636 1,1,1-TRICHLOROETHANE < 3.0 UG 86.8 1440 < 0.0050 PPM	23020078	AIOII C	13/10/2023	ARCHIVES 5.00.07-1	3/16	3123 - QG12430	FORMALDEHYDE	0.11	0.10	UG	23.3	1440	0.0037		РРМ
Analyzed By: JZATCHOK Analyzed On: 5/25/2023 Approved By: BEWING Approved On: 5/31/2023 O.14 O.10 UG 23.3 1440 O.050 PPM 23026080 ATOH 0.5/18/2023 ADD SO/18/2023	Analyzed By:	JZATCHOK		Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023								
Analyzed By: JZATCHOK Analyzed On: 5/25/2023 Analyzed By: BEWING Approved By: BEWING Approved On: 5/31/2023 Model Model Model Model PPM 2020600 ATOH 05/18/2023 ADD 05/18/2023	23026079	ATOH ()5/18/2023	2ND FLOOR NORTH	571A	3H23 - QG13261									
23026080 ATOH 05/18/2023 2ND FLOOR SOUTH 525 2J23 - QF24636 1,1,1-TRICHLOROETHANE < 3.0 UG 86.8 1440 < 0.0063 PPM							FORMALDEHYDE	0.14	0.10	UG	23.3	1440	0.0050		РРМ
1,1,1-TRICHLOROETHANE < 3.0 UG 86.8 1440 < 0.0063 PPM	Analyzed By:	JZATCHOK		Analyzed On: 5/25/2023		Approved By: BEWING	Approved On: 5/31/2023								
	23026080	ATOH (5/18/2023	2ND FLOOR SOUTH	525	2J23 - QF24636									
4-PHENYL CYCLOHEXENE < 3.0 UG 78.6 1440 < 0.0059 PPM							1,1,1-TRICHLOROETHANE	<	3.0	UG		1440	<	0.0063	РРМ
							4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	РРМ

Page 2 of 18

1382 Stealth Street • Livermore, CA 94551 • (800) 833-1258 • FAX: (925) 461-7149 250 DeBartolo Place, Suite 2525 • Boardman, OH 44512 • (800) 833-1258 • FAX: (330) 758-1245

The Innovation & Value Leader in Occupational Hygiene Analysis

Custome	r: AEHS INC			Lab Work Order:			Custom	er No.:	46490				
Attention	: RONALD B	ISHOP				F	Received	I Date:	May 22,	2023			
Address		ERGATE ST NIO, TX 78217				Ľ	Date Rep	oorted:	May 31,	2023			
			I	Project ID: ITC									
Phone No.	.: (210) 656-9	300		PO No.:									
Fax No.	.: (210) 656-8	499											
						Qu	antity Fou	nd	Sam		Co	oncentrati	on
Lab Lab ample ID Code	Date Sampled Clie	nt Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Units
26080 ATOH	05/18/2023 2NE	FLOOR SOUTH	525										
					ACETONE	<	2.0	UG	126	1440	<	0.0067	PPM
					BENZENE	<	0.40	UG	110	1440	<	0.0011	PPM
					CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PPM
						<	0.60	UG	96.2	1440	<	0.0016	PPM
					ETHYL ACETATE ETHYL ALCOHOL	<	2.0 10	UG UG	103 120	1440 1440	<	0.0054 0.044	PPM PPM
					ETHYLBENZENE	<	0.50	UG	91.6	1440	< <	0.044	PPM
					HEPTANE	<	0.50	UG	81.1	1440	~	0.0015	PPM
					ISOPROPYL ALCOHOL	1.34	1.0	UG	96.8	1440	0.0056	0.0015	PPM
					METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PPM
					METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PPM
					METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PPM
					METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PPM
					NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	PPM
					N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	PPM
					n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PPM
					n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	PPM
					PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPN
					STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPM
					TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PPM
					TOLUENE	<	2.0	UG	100	1440	<	0.0053	PPM
					TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPM
					XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPM

Page 3 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

Cu	istome	r: AEHS INC		Lab Work Order:	2023050825		Custom	er No.:	46490				
At	ttentior	1: RONALD BISHOP				I	Received	Date:	May 22,	2023			
A	Address	S: 4402 CENTERGATE ST SAN ANTONIO, TX 78217 USA				I	Date Rej	oorted:	May 31,	2023			
				Project ID: ITC									
Pho	one No	.: (210) 656-9300		PO No.:									
F	⁼ax No	.: (210) 656-8499											
						Q	uantity Fou	nd	Sam	nple	с	oncentrati	tion
	Lab Code	Date Sampled Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Un
26081 A	АТОН	05/18/2023 2ND FLOOR NORTH	525	2J23 - QF24601									
					1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	P
					4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	F
					ACETONE	<	2.0	UG	126	1440	<	0.0067	F
					BENZENE	<	0.40	UG	110	1440	<	0.0011	F
					CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	
					CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	F
					ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	F
					ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	F
					ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	
					HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	
					ISOPROPYL ALCOHOL	<	1.0	UG	96.8	1440	<	0.0042	
					METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	
					METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	
					METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	
					METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	
					NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	I
					N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	F
					n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	F
					n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	F
					PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	I
					STYRENE	<	0.50	UG	84.1	1440	<	0.0014	F
					TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	F
					TOLUENE	<	2.0	UG	100	1440	<	0.0053	
					TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	F
					XYLENES	<	1.0	UG	87.1	1440	<	0.0026	Р

The Innovation & Value Leader in Occupational Hygiene Analysis

Customer: AEHS INC		Lab Work Order:	2023050825		Custome	er No.:	46490				
Attention: RONALD BISHOP				F	Receivea	l Date:	May 22,	2023			
Address: 4402 CENTERGATE ST SAN ANTONIO, TX 78217 USA				L	Date Rep	oorted:	May 31,	2023			
		Project ID: ITC									
Phone No.: (210) 656-9300		PO No.:									
Fax No.: (210) 656-8499											
				Qu	antity Fou	nd	Sam		Co	oncentratio	on
Lab Lab Date Sample ID Code Sampled Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Unit
halyzed By: MWAGNER Analyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
026082 ATOH 05/18/2023 1ST FLOOR SOUTH	525	2J23 - QF24380									
			1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	PP
			4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PP
			ACETONE	<	2.0	UG	126	1440	<	0.0067	PP
			BENZENE	<	0.40	UG	110	1440	<	0.0011	PP
			CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PP
			CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PP
			ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	PP
			ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PP
			ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PF
			HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	PP
			ISOPROPYL ALCOHOL	<	1.0	UG	96.8	1440	<	0.0042	PF
			METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PF
			METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PF
			METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PP
			METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PP
			NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	PP
			N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	PP
			n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PF
			n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	PP
			PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PP
			STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PP
			TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PP
			TOLUENE	<	2.0	UG	100	1440	<	0.0053	PP

Page 5 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

	Custome	r: AEHS	INC		Lab Work Order:	2023050825		Custome	er No.:	46490				
			LD BISHOP				F	Received	I Date [.]	May 22.	2023			
			CENTERGATE ST					Date Rep						
	Addres		NTONIO, TX 78217				L		ioneu.	way or,	2020			
					Project ID: ITC									
F	Phone No	o.: (210) 6	56-9300		PO No.:									
	Fax No	o.: (210) 6	56-8499											
							Qu	antity Fou	nd	Sam	•	C	oncentratio	on
Lab Sample ID	Lab Code	Date Sampled	Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Units
23026082	ATOH	05/18/2023	1ST FLOOR SOUTH	525										
						TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	РРМ
						XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPM
Analyzed By	: MWAGNE	R	Analyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
23026083	ATOH	05/18/2023	1ST FLOOR EAST	525	2J23 - QF23771									
						1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	РРМ
						4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PPM
						ACETONE	<	2.0	UG	126	1440	<	0.0067	PPM
						BENZENE	<	0.40	UG	110	1440	<	0.0011	РРМ
						CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	РРМ
						CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PPM
						ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	PPM
						ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PPM
						ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PPM
						HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	PPM
						ISOPROPYL ALCOHOL	<	1.0	UG	96.8	1440	<	0.0042	PPM
						METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PPM
						METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PPM
						METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PPM
						METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	РРМ
						NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	РРМ
						N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	РРМ
						n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	РРМ
						n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	РРМ
						PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPM

Page 6 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

(Custome	r: AEHS	INC		Lab Work Order:			Custom	er No.:	46490				
	Attentio	n: RONAL	_D BISHOP				F	Received	l Date:	May 22	2023			
	Addres		ENTERGATE ST NTONIO, TX 78217				L	Date Rep	oorted:	May 31,	2023			
					Project ID: ITC									
P	hone No	. <u>:</u> (210) 6	56-9300		PO No.:									
	Fax No	o.: (210) 6	56-8499											
							Qu	antity Fou	nd	San		Co	oncentrati	on
Lab Sample ID	Lab Code	Date Sampled	Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Units
3026083	ATOH	05/18/2023	1ST FLOOR EAST	525										
						STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPM
						TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PPM
						TOLUENE	<	2.0	UG	100	1440	<	0.0053	PPM
						TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPM
						XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPM
analyzed By:	MWAGNE	R	Analyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
3026084	ATOH	05/18/2023	2ND FLOOR EAST	525	2J23 - QF24504									
						1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	PPM
						4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PPM
						ACETONE	<	2.0	UG	126	1440	<	0.0067	PPM
						BENZENE	<	0.40	UG	110	1440	<	0.0011	PPM
						CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PPM
						CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PPM
						ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	PPM
						ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PPM
						ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PPM
						HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	PPM
						ISOPROPYL ALCOHOL	1.15	1.0	UG	96.8	1440	0.0048		PPM
						METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PPM
						METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PPM
						METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PPM
						METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PPM
						NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	PPM
						N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	PPM

Page 7 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

Customer: AEHS INC				Customer No.: 46490 Received Date: May 22, 2023							
Attention: RONALD BISHOP											
Address: 4402 CENTERGATE ST SAN ANTONIO, TX 78217 USA				L	Date Rep	oorted:	May 31,	2023			
		Project ID: ITC									
Phone No.: (210) 656-9300		PO No.:									
Fax No.: (210) 656-8499											
Lab Lab Date	Media	Media Lot / Serial #	Analytan Deguarted	Quantity Found Total RptLmt Units			Sample Time		Concentration Found Unit		
ample ID Code Sampled Client Sample ID			Analytes Requested	Total	RpiLmi	Units	Vol. (L)	(min)	Found		Units
3026084 ATOH 05/18/2023 2ND FLOOR EAST	525		n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PPM
			n-HEXANE	<	0.60	UG	87.7	1440	~	0.0032	PPN
			PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPI
			STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPI
			TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PP
			TOLUENE	<	2.0	UG	100	1440	<	0.0053	PP
			TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPI
			XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPI
alyzed By: MWAGNER Analyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
026085 ATOH 05/18/2023 1ST FLOOR WEST	525	2J23 - QF24691									
			1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	PPI
			4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PP
			ACETONE	<	2.0	UG	126	1440	<	0.0067	PP
			BENZENE	<	0.40	UG	110	1440	<	0.0011	PP
			CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PP
			CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PP
			ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	PP
			ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PP
			ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PF
			HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	PF
			ISOPROPYL ALCOHOL	1.12	1.0	UG	96.8	1440	0.0047		PF
			METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PF
			METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PP

Page 8 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

Customer: AEHS INC			Lab Work Order:	2023050825		Custom	er No.:	46490				
Attention: RONALD BISHO)P				F	Received	Date:	May 22,	2023			
Address: 4402 CENTERG SAN ANTONIO, USA					L	Date Rep	oorted:	May 31,	2023			
			Project ID: ITC									
Phone No.: (210) 656-9300			PO No.:									
Fax No.: (210) 656-8499												
					Qu	antity Fou	nd	Sam	•	Co	oncentrati	on
Lab Lab Date Sample ID Code Sampled Client Sa	mple ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Units
23026085 ATOH 05/18/2023 1ST FLO	OR WEST	525										
				METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PPM
				NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	PPM
				N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	PPM
				n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PPM
				n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	PPM
				PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPM
				STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPM
				TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PPM
				TOLUENE	<	2.0	UG	100	1440	<	0.0053	PPM
				TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPM
				XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPM
Analyzed By: MWAGNER An	alyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
23026086 ATOH 05/18/2023 2ND FLC	OR WEST	525	2J23 - QF24133									
				1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	PPM
				4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PPM
				ACETONE	<	2.0	UG	126	1440	<	0.0067	PPM
				BENZENE	<	0.40	UG	110	1440	<	0.0011	PPM
				CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PPM
				CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PPM
				ETHYLACETATE	<	2.0	UG	103	1440	<	0.0054	PPM
				ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PPM
				ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PPM
				HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	PPM
				ISOPROPYL ALCOHOL	1.93	1.0	UG	96.8	1440	0.0081		PPM

Page 9 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

		r: AEHS						Custome	er No.:	46490				
	Attentio	n: RONA	LD BISHOP				F	Received	Date:	May 22,	2023			
	Addres		CENTERGATE ST NTONIO, TX 78217				Ľ	Date Rep	oorted:	May 31,	2023			
					Project ID: ITC									
P	hone No	o.: (210) 6	656-9300		PO No.:									
	Fax No	o.: (210) 6	656-8499											
							Qu	antity Four	nd	Sam	ple	Co	oncentratio	on
Lab Sample ID	Lab Code	Date Sampled	Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Units
23026086	ATOH	05/18/2023	3 2ND FLOOR WEST	525										
						METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PPM
						METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PPM
						METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PPM
						METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PPM
						NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	PPM
						N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	PPM
						n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PPM
						n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	PPM
						PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPM
						STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPM
						TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PPM
						TOLUENE	<	2.0	UG	100	1440	<	0.0053	PPM
						TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPM
Analyzed By:	MWAGNE	R	Analyzed On: 5/24/2023		Approved By: KTAYLOR	XYLENES Approved On: 5/24/2023	<	1.0	UG	87.1	1440	<	0.0026	РРМ
			· ···· , ······											
23026087	ATOH	05/18/2023	B DEPOSIT LIBRARY 3.07.02	525	2J23 - QF24954									
						1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	PPM
						4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PPM
						ACETONE	<	2.0	UG	126	1440	<	0.0067	PPM
						BENZENE	<	0.40	UG	110	1440	<	0.0011	PPM
						CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PPM
						CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PPM
						ETHYLACETATE	<	2.0	UG	103	1440	<	0.0054	PPM
						ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PPM

Page 10 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

		er: AEHS					Customer No.: 46490							
	Attentio	n: RONA	LD BISHOP				F	Received	l Date:	May 22,	2023			
	Addres		ENTERGATE ST NTONIO, TX 78217				L	Date Rep	oorted:	May 31,	, 2023			
					Project ID: ITC									
F	hone No	o.: (210)6	56-9300		PO No.:									
	Fax No	o.: (210)6	56-8499											
							Qu	antity Fou	nd	Sam	nple	Co	ncentrati	on
Lab Sample ID	Lab Code	Date Sampled	Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Units
23026087	ATOH	05/18/2023	DEPOSIT LIBRARY 3.07.02	525			<	0.50	110	01.0	1110			
						ETHYLBENZENE HEPTANE	<	0.50 0.50	UG UG	91.6	1440 1440	<	0.0013	PPM
						ISOPROPYL ALCOHOL	1.19	1.0	UG	81.1 96.8	1440	< 0.0050	0.0015	PPM PPM
						METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PPM
						METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PPM
						METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PPM
						METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PPM
						NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	РРМ
						N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	РРМ
						n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PPM
						n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	РРМ
						PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPM
						STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPM
						TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PPM
						TOLUENE	<	2.0	UG	100	1440	<	0.0053	PPM
						TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPM
						XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPM
Analyzed By:	MWAGNE	ĒR	Analyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
3026088	ATOH	05/18/2023	ARCHIVES 3.08.07-1	525	2J23 - QF24871									
						1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	PPM
						4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PPM
						ACETONE	<	2.0	UG	126	1440	<	0.0067	PPM
						BENZENE	<	0.40	UG	110	1440	<	0.0011	PPM
						CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PPM

Page 11 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

				Lab Work Order:	2023050825								
Customer	· AEHS INC				202000020		Custome	er No.:	46490				
Attention	: RONALD BISHO	P				F	Received	Date:	May 22,	2023			
Address	2 4402 CENTERG SAN ANTONIO, USA					L	Date Rep	oorted:	May 31,	2023			
				Project ID: ITC									
Phone No.	: (210) 656-9300			PO No.:									
Fax No.	: (210) 656-8499												
	- ()												
Lab Lab	Date						antity Four		Sam	iple Time		ncentratio	
	Sampled Client Sar	mple ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	(min)	Found		Units
23026088 ATOH (05/18/2023 ARCHIVE	ES 3.08.07-1	525										
					CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PPM
					ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	PPM
					ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PPM
					ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PPM
					HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	PPM
					ISOPROPYL ALCOHOL	1.33	1.0	UG	96.8	1440	0.0056		PPM
					METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PPM
					METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PPM
					METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PPM
					METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PPM
					NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	РРМ
					N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	PPM
					n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PPM
					n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	PPM
					PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPM
					STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPM
					TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PPM
					TOLUENE	<	2.0	UG	100	1440	<	0.0053	PPM
					TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPM
					XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPM
Analyzed By: MWAGNEF	R Ana	alyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
23026089 ATOH (05/18/2023 3RD FLO	OR NORTH	525	2J23 - QF24362									
					1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	PPM
					4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	PPM

Page 12 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

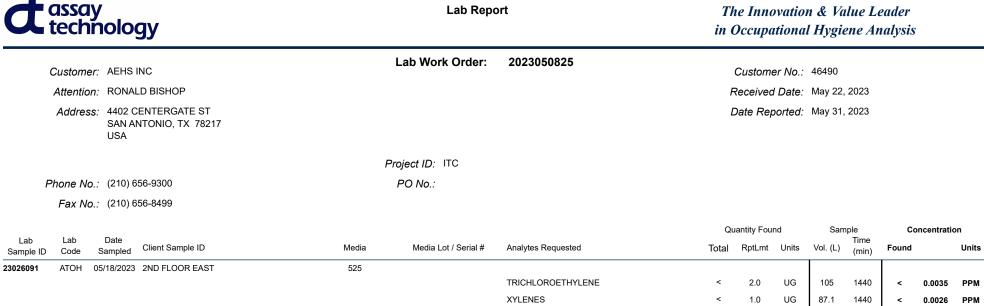
	tion:							er No.:					
Addı	Attention: RONALD BISHOP Address: 4402 CENTERGATE ST					F	Received	l Date:	May 22	2023			
		4402 CENTERGATE ST SAN ANTONIO, TX 78217 USA				Ľ	Date Rej	oorted:	May 31,	2023			
			I	Project ID: ITC									
Phone	No.:	(210) 656-9300		PO No.:									
Fax	No.:	(210) 656-8499											
						Qu	antity Fou	nd	San	nple	C	oncentrat	ion
Lab Lab ample ID Code		Date ampled Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Units
026089 ATO	H 05/1	18/2023 3RD FLOOR NORTH	525										
					ACETONE	<	2.0	UG	126	1440	<	0.0067	PPM
					BENZENE	<	0.40	UG	110	1440	<	0.0011	PPM
					CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	PPN
					CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PPN
					ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	PPM
					ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PPM
					ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PPM
					HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	PPM
					ISOPROPYL ALCOHOL	1.15	1.0	UG	96.8	1440	0.0048		PPM
					METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	PPM
					METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	PPM
					METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	PPM
					METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	PPM
					NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	PPM
					N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	PPM
					n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	PPM
					n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	PPM
					PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	PPN
					STYRENE	<	0.50	UG	84.1	1440	<	0.0014	PPN
					TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	PPN
					TOLUENE	<	2.0	UG	100	1440	<	0.0053	PPN
					TRICHLOROETHYLENE	<	2.0	UG	105	1440	<	0.0035	PPN
					XYLENES	<	1.0	UG	87.1	1440	<	0.0026	PPM

Page 13 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

С	ustome	r: AEHS	INC		Lab Work Order:	2023050825		Custom	er No.:	46490				
A	Attentio	n: RONAL	_D BISHOP				F	Received	Date:	May 22,	2023			
	Addres		ENTERGATE ST NTONIO, TX 78217				L	Date Rep	oorted:	May 31,	2023			
					Project ID: ITC									
Ph	none No	o.: (210) 6	56-9300		PO No.:									
	Fax No	o.: (210) 6	56-8499											
							Qu	antity Fou	nd	Sam	ple	C	oncentrati	ion
₋ab nple ID	Lab Code	Date Sampled	Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	Time (min)	Found		Ur
6090	ATOH	05/18/2023	1ST FLOOR NORTH	525	2J23 - QF24391									
						1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	F
						4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	F
						ACETONE	<	2.0	UG	126	1440	<	0.0067	F
						BENZENE	<	0.40	UG	110	1440	<	0.0011	F
						CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	F
						CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	F
						ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	F
						ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	F
						ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	F
						HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	F
							<	1.0	UG	96.8	1440	<	0.0042	1
						METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	F
						METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	
							<	1.0	UG	90.7	1440	<	0.0027	F
							<	3.0	UG	105	1440	<	0.0082	
							<	6.5 0.90	UG	84.1	1440	<	0.015	F
							<		UG	80.5	1440	<	0.0024	F
						n-BUTYL ALCOHOL n-HEXANE	<	1.0 0.60	UG UG	103 87.7	1440 1440	<	0.0032	F
						PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0019	F
						STYRENE	<	0.50	UG	95.0 84.1	1440	< <	0.0031 0.0014	F
						TETRAHYDROFURAN	<	0.50	UG	112	1440	<	0.0014	F
						TOLUENE	<	2.0	UG	112	1440	<	0.0024	F
						TRICHLOROETHYLENE	<	2.0	UG	100	1440	<	0.0053	F
						XYLENES	~	1.0	UG	87.1	1440		0.0035	F

Page 14 of 18


1382 Stealth Street • Livermore, CA 94551 • (800) 833-1258 • FAX: (925) 461-7149 250 DeBartolo Place, Suite 2525 • Boardman, OH 44512 • (800) 833-1258 • FAX: (330) 758-1245

The Innovation & Value Leader in Occupational Hygiene Analysis

Customer: AEHS INC		Lab Work Order:	2023050825		Custome	er No.:	46490				
Attention: RONALD BISHOP				F	Receivea	I Date:	May 22,	2023			
Address: 4402 CENTERGATE ST SAN ANTONIO, TX 78217 USA					Date Rep						
		Project ID: ITC									
Phone No.: (210) 656-9300		PO No.:									
Fax No.: (210) 656-8499											
Lab Lab Date				Qu	antity Fou	nd	Sam	ple Time	Co	ncentrati	on
ample ID Code Sampled Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Total	RptLmt	Units	Vol. (L)	(min)	Found		Uni
lyzed By: MWAGNER Analyzed On: 5/24/2023		Approved By: KTAYLOR	Approved On: 5/24/2023								
6091 ATOH 05/18/2023 2ND FLOOR EAST	525	2J23 - QF24802									
			1,1,1-TRICHLOROETHANE	<	3.0	UG	86.8	1440	<	0.0063	P
			4-PHENYL CYCLOHEXENE	<	3.0	UG	78.6	1440	<	0.0059	Ρ
			ACETONE	2.10	2.0	UG	126	1440	0.0070		P
			BENZENE	<	0.40	UG	110	1440	<	0.0011	Р
			CHLOROFORM	<	3.0	UG	106	1440	<	0.0058	Ρ
			CYCLOHEXANONE	<	0.60	UG	96.2	1440	<	0.0016	PI
			ETHYL ACETATE	<	2.0	UG	103	1440	<	0.0054	P
			ETHYL ALCOHOL	<	10	UG	120	1440	<	0.044	PI
			ETHYLBENZENE	<	0.50	UG	91.6	1440	<	0.0013	PI
			HEPTANE	<	0.50	UG	81.1	1440	<	0.0015	P
			ISOPROPYL ALCOHOL	1.62	1.0	UG	96.8	1440	0.0068		PI
			METHYL ETHYL KETONE	<	0.80	UG	116	1440	<	0.0023	Ρ
			METHYL ISOBUTYL KETONE	<	0.70	UG	95.3	1440	<	0.0018	Р
			METHYL METHACRYLATE	<	1.0	UG	90.7	1440	<	0.0027	Р
			METHYLENE CHLORIDE	<	3.0	UG	105	1440	<	0.0082	P
			NAPHTHALENE	<	6.5	UG	84.1	1440	<	0.015	PI
			N-BUTYL ACETATE	<	0.90	UG	80.5	1440	<	0.0024	P
			n-BUTYL ALCOHOL	<	1.0	UG	103	1440	<	0.0032	P
			n-HEXANE	<	0.60	UG	87.7	1440	<	0.0019	P
			PERCHLOROETHYLENE	<	2.0	UG	95.6	1440	<	0.0031	Р
			STYRENE	<	0.50	UG	84.1	1440	<	0.0014	P
			TETRAHYDROFURAN	<	0.80	UG	112	1440	<	0.0024	P
			TOLUENE	<	2.0	UG	100	1440	<	0.0053	PF

Page 15 of 18

Approved On: 5/24/2023

Approved By: KTAYLOR

Analyzed By: MWAGNER

Analyzed On: 5/24/2023

Page 16 of 18

The Innovation & Value Leader in Occupational Hygiene Analysis

	Custome	r: AEHS	INC		Lab Work Order:	2023050825		Customer	No.: 46490		
	Attentior	: RONA	LD BISHOP					Received D	ate: May 22, 202	3	
	Address	· 4402 C	CENTERGATE ST					Date Repor	ted: May 31, 202	3	
	1001000		NTONIO, TX 78217					Dute reper			
					Project ID: ITC						
F	hone No.	.: (210) 6	56-9300		PO No.:						
	Eax No	.: (210) 6	56-8499								
	1 87 100	(210) 0									
								Quantity Found	Sample	Concentra	ation
Lab Sample ID	Lab Code	Date Sampled	Client Sample ID	Media	Media Lot / Serial #	Analytes Requested		Total RptLmt U	Tir Inits Vol. (L) (m	E a constal	Units
	Method F	Reference	es:								
	TestCode	<u>)</u>	Analytes Requested		Method Referen	ce	Regulatory Agency	TWA Limit	STEL Limit	Exposure Units	
	71556A		1,1,1-TRICHLOROETHANE		AT L-OV (GC/FI	D)	OSHA PEL	350		PPM	
	4994165/	Ą	4-PHENYL CYCLOHEXENE		AT L-OV (GC/FI	D)					
	67641A		ACETONE		AT L-OV (GC/FI	D)	OSHA PEL	1000		PPM	
	71432A		BENZENE		AT L-OV (GC/FI	D)	OSHA PEL	1	5	PPM	
	67663A		CHLOROFORM		AT L-OV (GC/FI	D)	OSHA CEIL		50	PPM	
	108941A		CYCLOHEXANONE		AT L-OV (GC/FI	D)	OSHA PEL	50		PPM	
	141786A		ETHYL ACETATE		AT L-OV (GC/FI	D)	OSHA PEL	400		PPM	
	64175A		ETHYL ALCOHOL		AT L-OV (GC/FI	D)	OSHA PEL	1000		PPM	
	100414A		ETHYLBENZENE		AT L-OV (GC/FI	D)	OSHA PEL/NIOSH	100	125	PPM	
	50000A		FORMALDEHYDE		MOD OSHA 10	07	OSHA PEL / STEL	0.75	2	PPM	
	142825A		HEPTANE		AT L-OV (GC/FI	D)	OSHA PEL	500		PPM	
	67630A		ISOPROPYL ALCOHOL		AT L-OV (GC/FI	D)	OSHA PEL/NIOSH STEL	400	500	PPM	
	78933A		METHYL ETHYL KETONE		AT L-OV (GC/FI	D)	OSHA PEL	200		PPM	
	108101A		METHYL ISOBUTYL KETONE		AT L-OV (GC/FI	D)	OSHA PEL	100		PPM	
	80626A		METHYL METHACRYLATE		AT L-OV (GC/FI	D)	OSHA PEL	100		PPM	
	75092A		METHYLENE CHLORIDE		AT L-OV (GC/FI	D)	OSHA PEL	25	125	PPM	
	123864A		N-BUTYL ACETATE		AT L-OV (GC/FI	D)	OSHA PEL	150		PPM	
	71363A		n-BUTYL ALCOHOL		AT L-OV (GC/FI	D)	OSHA PEL/NIOSH CEIL	100	50	PPM	
	110543A		n-HEXANE		AT L-OV (GC/FI	D)	OSHA PEL	500		PPM	
	91203A		NAPHTHALENE		AT L-OV (GC/FI	D)	OSHA PEL/NIOSH STEL	10	15	PPM	
	127184A		PERCHLOROETHYLENE		AT L-OV (GC/FI	D)	OSHA PEL/CEILING	100	200	PPM	
	100425A		STYRENE		AT L-OV (GC/FI	D)	OSHA PEL/CEILING	100	200	PPM	
	109999A		TETRAHYDROFURAN		AT L-OV (GC/FI	D)	OSHA PEL	200		PPM	
	108883A		TOLUENE		AT L-OV (GC/FI	D)	OSHA PEL/CEILING	200	300	PPM	
	79016A		TRICHLOROETHYLENE		AT L-OV (GC/FI	D)	OSHA PEL/CEILING	100	200	PPM	
	1330207/	Ą	XYLENES		AT L-OV (GC/FI	D)	OSHA PEL/NIOSH STEL	100	150	PPM	

Page 17 of 18

technology		Lab Repo	ort	The Innovation & Value Leader in Occupational Hygiene Analysis
Customer: AEHS INC	La	b Work Order:	2023050825	Customer No.: 46490
Attention: RONALD BISHOP				Received Date: May 22, 2023
Address: 4402 CENTERGATE ST SAN ANTONIO, TX 78217 USA				Date Reported: May 31, 2023
	Proje	ect ID: ITC		
Phone No.: (210) 656-9300	P	O No.:		
Fax No.: (210) 656-8499				
Lab Lab Date Sample ID Code Sampled Client Sample ID	Media	Media Lot / Serial #	Analytes Requested	Quantity Found Sample Concentration Time Total RptLmt Units Vol. (L) _(min) Found Units

Applicable OSHA PELs or NIOSH RELS have been included in this lab report for guidance, but may not be sufficient for regulatory compliance. Clients should be aware that more stringent international, state, local, or organizational exposure limits may supersede the limits included with this report. Visit www.OSHA.gov/dsg/annotated-pels for detailed information on exposure limits and OSHA policies.

Appendix F Temperature and Relative Humidity Results

	А	В	С	D
1	Instrument Model: HH	—	· · · ·	
2	Instrument Serial #: 2	00944001		
3	Downloaded On: 5/21	/2023 10:19:31		
4	Data Duration: 5/18/2	2023 09:04:46 to 5/18/2023 10:47:	27	
5	Timestamp	Location	Temperature	Relative Humidity
6		(Name)	(F)	(%)
7	5/18/2023 09:04:46	Outside East	89.5	50.8
8	5/18/2023 09:08:48	Outside North	88.1	49.5
9	5/18/2023 09:11:55	Outside West	79.3	64.6
10	5/18/2023 09:15:41	Outside South	78.8	66.1
11		Mean	83.9	57.8
12		Maximum	89.5	66.1
13		Minimum	78.8	49.5
14		Standard Deviation	5.7	8.8
15				
16	5/18/2023 09:20:44	1st Floor East(1.02.07)	73.9	48.6
17	5/18/2023 09:36:02	1st Floor North (1.06.03)	78.3	47.9
18	5/18/2023 09:38:11	1st Floor West(1.05.19)	77.8	44.2
19	5/18/2023 09:40:17	1st Floor South(1.05.010)	75.8	46.6
20	5/18/2023 09:44:02	2nd Floor East, Dest/Doors	72.4	59.0
21	5/18/2023 09:48:42	2nd Floor North, Tejano	71.9	60.8
22	5/18/2023 09:51:16	2nd Floor East, Stairway 3 & 4	73.4	55.6
23	5/18/2023 09:54:29	2nd Floor South, Dutch	72.4	58.0
24	5/18/2023 09:56:35	3rd Floor East, 3.01.05	72.9	56.1
25	5/18/2023 10:01:27	3rd Floor North, 3.04.14	74.4	55.6
26	5/18/2023 10:04:18	3rd Floor West, 3.07.02	73.9	46.9
27	5/18/2023 10:08:11	3rd Floor South 3.12.04C-1	70.0	46.6
28	5/18/2023 10:10:17	3rd Floor Deposit Room (3.07.02)	65.6	42.9
29	5/18/2023 10:12:46	3rd Floor (3.08.01)	67.0	50.0
30	5/18/2023 10:15:10	3rd Floor (3.08.07)	63.6	49.2
31	5/18/2023 10:22:42	Gov Dolth Briscoe Jr (3.12.08)	70.0	59.8
32	5/18/2023 10:35:43	Collection (3.04.19)	65.6	47.7
33	5/18/2023 10:41:06	Collection (3.02.04)	70.5	61.6
34	5/18/2023 10:43:08	Collection (3.02.02)	75.3	57.2
35	5/18/2023 10:47:27	Collection (3.07.01)	72.9	49.2
36		Mean	71.9	52.2
37		Maximum	78.3	61.6
38		Minimum	63.6	42.9
39		Standard Deviation	4.0	6.0