Session: OS-2 Interdisciplinary research on sea-ice biogeochemistry and associated ecosystems
Polar program: None
Title: Biogeochemistry at the early stages of ice formation: insights from PIPERS
Author(s): Bruno Delille1 (bruno.delille@uliege.be), Fanny Van der Linden1,2, Gauthier Carnat2, Célia Sapart2, Jeroen de Jong2, Marie Kotovitch1,2, Florian Deman3, Jean-Pierre Descy1, Daiki Nomura4, Sharon Stammerjohn5, Steve Ackley6, Jean-Louis Tison2
Institute(s): 1Université de Liège, Chemical Oceanography Unit, Liège, Belgium, 2Université Libre de Bruxelles, Glaciology Unit, Bruxelles, Belgium, 3Vrije Universiteit Brussel (VUB), AMGC Department, Brussels, Belgium, 4Hokkaido University, Faculty of Fisheries Science, Hakodate, Japan, 5University of Colorado, Boulder, United States, 6University of Texas at San Antonio, Snow and Ice Geophysics Laboratory, San Antonio, United States

Text:
The PIPERS cruise on N. B. Palmer into the early winter Ross Sea took place between April and June 2017. PIPERS was a unique opportunity to investigate biogeochemistry of pack ice during early stages of ice formation. We will present insights of the dynamics of sympagic microalgae assemblages, nutrients, particulate organic carbon and 2 potent greenhouse gases (carbon dioxide and nitrous oxide) during early ice growth.

The comparison of CO$_2$ fluxes over consolidated and unconsolidated ice show that 1) sea ice acts as a source of CO$_2$ for the atmosphere 2) largest fluxes occur at the earliest sea ice growth stages (i.e. frazil ice, unconsolidated grey ice, pancake ice). Large fluxes are due to ongoing active rejection of impurities, high porosity of highly saline/high temperature young ice, and the absence of snow. Overall, snow appears to restrict CO$_2$ fluxes. In some cases, fluxes over snow appears to be nil or even opposite to fluxes over bare ice. Therefore, while snow is often view as a transient buffer for air-ice gases fluxes, the role of snow appears to be more complicated. The new measurements of CO$_2$ fluxes over young ice carried out during PIPERS potentially allow to complete a budget of CO$_2$ fluxes over Antarctic pack ice by filling a significant gap.

Preferred Presentation
Type: No preference