CAMPUS MASTER PLAN UPDATE
The Campus Master Plan Update is intended to supplement the existing Campus Master Plan approved by the University of Texas System Board of Regents in August of 2009. The existing 2009 Campus Master Plan remains in effect with the exception of those modifications to the Master Plan included in this update. All components of the Master Plan which have not been modified since 2009 and remain in effect as indicated in the 2009 Campus Master Plan are not included in this update. Specifically, the Campus Master Plan for the whole of the Downtown Campus, the whole of the Hemisfair Park Campus and several districts of the Main Campus are unchanged from 2009 and are therefore intentionally omitted here.
CAMPUS MASTER PLAN UPDATE
TABLE OF CONTENTS

Acknowledgments and Supporting Documents	II
I. INTRODUCTION	
Campus Growth and Space Demand	1
II. GUIDELINES	4
Architectural Guidelines	6
Wayfinding Guidelines	9
III. THE UTSA MAIN CAMPUS	10
The UTSA Main Campus Today	12
Detail Plans of the Main Campus	14
Leon Creek North	16
Residential Area East	18
Recreational Playfields	19
West Campus	20
Park West	21
The UTSA Main Campus Long Range Plan	22
Detail Plans of The Main Campus	24
Leon Creek North	26
Residential Area East	27
Recreational PlayFields	28
West Campus	29
Park West	30
Utility Infrastructure	
Central Campus	
Electrical Systems Distribution	32
Communications Distribution	34
Water Distribution	36
Natural Gas Distribution	38
Thermal Utility Distribution	40
Sanitary Sewer System	42
Storm Sewer System	44
Easements	46
Environmental Systems	52
Central Campus	
Floodplain	54
Water Quality	55
Park West	
Water Quality and Geological	57
Leon Creek North	
Residential Area East	
Recreational Playfields	
West Campus	
Park West	
ACKNOWLEDGMENTS

Board of Regents
University of Texas System (term expires)
Paul L. Foster Chair (2019)
Wm. Eugene Powell Vice Chair (2015)
R. Steven Hicks Vice Chair (2015)
Ernest Aliseda Regent (2019)
Alex M. Cranberg Regent (2017)
Wallace L. Hall, Jr. Regent (2017)
Jeffrey D. Hildebrand Regent (2019)
Brenda Pejovich Regent (2017)

Executive Officers
University of Texas System
Francisco G. Cigarroa Chancellor
Pedro Reyes Executive Vice Chancellor for Academic Affairs
Scott C. Kelley Executive Vice Chancellor for Business Affairs
Raymond S. Greenberg Executive Vice Chancellor for Health Affairs
Amy Shaw Thomas Vice Chancellor and Counsel for Health Affairs
Patricia D. Hurn Vice Chancellor for Research and Innovation
Daniel H. Sharphorn Vice Chancellor and General Counsel
Barry McBee Vice Chancellor and Chief Governmental Relations Officer
William H. Shute Vice Chancellor for Federal Relations
Randa S. Safady Vice Chancellor for External Relations
Stephanie Bond Huie Vice Chancellor for Strategic Initiatives
Francie A. Frederick General Counsel to the Board

Administrative Officers of the Colleges
John D. Murphy, Jr. College of Architecture
Wm. Gerard Sanders College of Business
Betty Merchant College of Education and Human Development
Mehdi Shadaram College of Engineering
Dorothy Flannagan Graduate School
Richard Diem Honors College
Daniel J. Gello College of Liberal and Fine Arts
Rogelio Saenz College of Public Policy
George Perry College of Sciences
Lawrence Williams University College

Master Plan Management Council
Pam Bacon Associate Vice President of Administration
Joe Izbaid Associate VP for University Communication and Marketing
Kevin Price Dean Of Students, Associate Vice President for Student Life
Hazen Rashed Ali Faculty Senate Designee
Zack Dunn UTSA Student Government Association Representative
Doug Lipscomb University Architect (Chair)

Support Staff & 2014 Campus Master Plan Update Planning Team
Doug Lipscomb Director of Facilities Planning & Development/University Architect
Todd Brant University Landscape Architect
Lani Cabico Senior Environmental Planner
Jessie Chavez CAD Operator/Drafter
Rene Colunga Utilities Project Manager Engineer
Margaret Dettloff Senior Administrative Associate
Ernest Haffner Senior Planner
Richard Heredia Planner
Alejandro Perea Intern
Vanessa Turner CAD Operator/Drafter

SUPPORTING DOCUMENTS

2009 Campus Master Plan
Barnes Gromatzky Kosarek Architects, Inc. Campus Planning
Michael Dennis & Associates Campus Planning
Accessology, Inc. Accessibility
Anderson Strickler, LLC Housing
Civil Engineering Consultants Water Quality
Cloud/Gehrman Associates Wayfinding/Signage
Coleman & Associates Landscape Architecture
Corrington Consulting Intramural & Recreational Sports
Goetting & Associates Mechanical, Electrical, & Plumbing
Jaster-Quentes & Associates Civil Engineering
Martin Alexiou Bryson, PLLC Transportation
O’Connell Robertson Associates Athletics
SWCA, Inc. Geological/Endangered Species

2011 Potable Water and Sanitary Sewer Study
Pape-Dawson-Engineers Water and Sanitary Sewer

2012 Utilities Master Plan and Electrical System Study
Burns & McDonnell Thermal, Gas & Electric
INTRODUCTION
To realize goals established in the University’s Strategic Plan, A Shared Vision UTSA 2016, the 2009 UTSA Campus Master Plan proposed to add approximately 10 million gross square feet (gsf) of space to the three campuses. Of the 9.9 million gsf of projected space additions to the University included in the Campus Master Plan, the Long Range Plan proposed adding approximately 7.7 million gsf to the Main Campus. The additional space was proposed to: accommodate increasing student enrollment to 30,000 students including addressing the existing Educational and General (E&G) space deficit of 919,291 net square feet (nsf) as projected by the Texas Higher Education Coordinating Board (THECB) Five Factor Model in 2008 based upon an enrollment of 28,543 students; increase faculty and staff; increase the number of beds on campus by 1,808 to 5,318 in support of the University’s objective of becoming a premier research institution.

Since the approval of the UTSA Campus Master Plan in 2009, 920,493 gsf of space has been added to the campus which includes the addition of 199,211 nsf of E&G space, the addition of 618 beds, and the addition of 1188 structured parking spaces. The progress made in the development of the campus over the previous five years, since the Board of Regents’ approved the UTSA Campus Master Plan, represents the addition of approximately 12% of the additional gsf of space proposed in the Long Range Plan, 22% of the 2008 space deficit as projected by the THECB Five Factor Model and the addition of 34% of the additional beds proposed in the Long Range Plan. However, despite the addition of 415,672 nsf of E&G space since 2004 the University continues to have a predicted space deficit of 932,669 nsf of E&G space as of the Fall 2013 THECB Five Factor Model, which is approximately double the space deficit in the Fall of 2004.
MATERIALS ON THE MAIN CAMPUS

Brick
In addition to the existing exterior materials, concrete and stone, clay brick was added as a material for building exteriors. Brick walls should be of modular brick with a nominal size of 2 1/4” x 4” x 8” laid in a running, common, Flemish or English bond pattern. Stack bonds are permitted as an accent pattern but should not exceed ten percent (10%) of the total wall area. Brick walls should be constructed of a four-color buff random blend consisting of masonry units in the following corresponding proportions. The brick finish should be a velour texture.

<table>
<thead>
<tr>
<th>Color</th>
<th>Finish</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow (152)</td>
<td>Velour</td>
<td>50%</td>
</tr>
<tr>
<td>Tan (218)</td>
<td>Velour</td>
<td>25%</td>
</tr>
<tr>
<td>Pink (220)</td>
<td>Velour</td>
<td>15%</td>
</tr>
<tr>
<td>Orange (258)</td>
<td>Velour</td>
<td>10%</td>
</tr>
</tbody>
</table>

Limestone trim should be used for window sills, parapets and all other elements with exposed horizontal top surfaces. The use of limestone is strongly encouraged for use in articulating the building’s base and for string courses, window lintels and other ornamental features. Mortar should be ivory buff masonry cement with a 3/8” tooled concave joint. Brick may be used as an exterior material in all districts and on campus.

ARCHITECTURAL GUIDELINES
FIGURE 1
Mortar

FIGURE 2
Running Bond

FIGURE 3
Common Bond/ 6th Course Flemish headers

FIGURE 4
Flemish bond/ Dutch Corner

FIGURE 5
English Bond/ Dutch Corner

FIGURE 6
Stack Bond
Cost Effective Building Materials

Upon occasion the University has need to construct buildings of a temporary nature at a relatively low first cost. Typically, in order to achieve a low first cost, the following materials are used in conjunction with other building systems which have a shorter expected useful life and higher operating costs than is typical for institutional quality buildings. Examples of these systems include single membrane roof systems, package unit heating ventilating and air conditioning systems, and electric reheat systems among others. Given the shorter expected useful life, more frequent renewal costs and higher operating and maintenance costs, careful evaluation and analysis should be given to the anticipated expected life of the facility and life cycle costs prior to the use of these materials and systems. The total cost of the project life cycle which should be evaluated and analyzed should include: expected renewal costs, expected utility costs, expected maintenance costs including related grounds, and additional costs resulting from a reduction in the highest and best use of the real estate including increased infrastructure expenditures and property optimization opportunity costs. Generally these systems and materials will not be cost effective when considering the life-cycle costs if the structures have an anticipated life beyond thirty years. However, if after careful evaluation and analysis of all of the life-cycle costs the use of low-cost materials is justified, the following materials may be used as an exterior material for all or portions of a building. To ensure that the use of low cost exterior materials will not detract from the overall quality of the physical environment use should be limited to only single or double story buildings located in the West Campus District of the Main Campus.

Metal Panel
Although metal panels have been utilized as an exterior building material since the origin of the Main Campus, prescriptions for its use were not addressed in the 2009 Campus Master Plan. Color for exterior metal panels should be chocolate brown to be approved by the University Architect.

Tilt-Wall
Tilt-walls were used as an exterior material subsequent to the 2009 Campus Master Plan for the Plaza Norte Building. The exterior coating color for tilt wall should be in the buff range to be approved by the University Architect.
WAYFINDING GUIDELINES

WAYFINDING

Since the approval of the Campus Master Plan by the Board of Regents in August of 2009, the University has completed a major master plan initiative to improve wayfinding on campus. Wayfinding was implemented on both the Downtown and Main Campuses and includes both pedestrian and vehicular signage to provide orientation and identification information.

FIGURE 1
Pedestrian Map

FIGURE 2
Primary Orientation Station

FIGURE 3
Secondary Orientation Station

FIGURE 4
Building ID

FIGURE 5
Street ID

FIGURE 6
Garage ID

FIGURE 7
Parking Lot ID

FIGURE 8
Vehicular Directional
THE UTSA MAIN CAMPUS
THE CAMPUS TODAY

Since the Board of Regents’ approval in August of 2009 of the UTSA Campus Master Plan, four capital projects have been constructed on the Main Campus: the Plaza Norte Building, the Bauerle Road Garage and UTSA Oval, the Park West Athletics Complex Phase I, and San Saba Hall. A fifth capital project, the North Paseo Building, is nearing completion of construction and is anticipated to be completed during the Fall 2014 semester. In addition to these five capital projects two significant institutionally managed projects have been constructed on the Main Campus, the Sculpture and Ceramics Graduate Studio and the Recreation Field Complex-East. The cumulative impact of these seven projects upon the campus has been the development or redevelopment of approximately 63 acres of land. The following is a summary by district of each of the five capital projects and two significant institutional projects that have been completed or are nearing completion since the approval of the 2009 UTSA Campus Master Plan.
FIGURE 1
Plan of the Existing Main Campus 2009

FIGURE 2
Plan of the Existing Main Campus 2014

- Existing UTSA Buildings 2009
- Existing UTSA Buildings Since 2009
Existing Central Campus 2009

- Main Building 1
- John Peace Library 2
- Business Building 3
- Arts Building 4
- McKinney Humanities Building 5
- Multidisciplinary Studies Building 6
- Flawn Sciences Building 7
- Engineering Building 8
- Biosciences Building 9
- Biotechnology Sciences and Engineering Building 10
- Engineering Building II 11
- University Center 12
- H-E-B University Center 13
- South Thermal Energy Plant/Ximenes Ave. Garage 14
- Physical Education Building 15
- Convocation Center 16
- Recreation and Wellness Center 17
- North Thermal Energy Plant 18
- Bosque Street Building 19
- Laurel Village 20
- Tobin Avenue Garage 21
- Roadrunner Cafe 22
- Chisholm Hall 23
- Chaparral Village 24
- Margaret Batts Tobin Laboratory Building 25
- Not Used 26
- Not Used 27
- Science Research Laboratories 28
- Research Laboratories 29
- Sculpture/Ceramics 30
- Business Service Annex 31
- Central Receiving and Warehouse 32
- Center for Archaeological Research 33
- Facilities Warehouse 34
- Facilities Services Building 35
- Child Development Center 36
- University Oaks Apartments 37
FIGURE 1
Plan of the Existing Central Campus 2009

FIGURE 2
Plan of the Existing Central Campus 2014

Existing Central Campus 2014
38 Sculpture & Ceramics Graduate Studio
39 Plaza Norte Building
40 Baurele Road Garage
41 San Saba Hall
42 North Paseo Building

UTSA MAIN CAMPUS
LEON CREEK NORTH

Plaza Norte Building
Area 75,327 sf
Completion August 2011

BUILDING SYSTEMS
Tilt-Wall Concrete

PROGRAM
Various academic and administrative functions

MASTER PLAN MODIFICATIONS
None

Bauerle Road Garage and UTSA Oval
Area 438,236 sf
Completion July 2012

BUILDING SYSTEMS
Concrete Structure with Limestone Veneer

PROGRAM
1188 Car Garage/Welcome Center/Alumni Center/ Administrative Offices/Spirit Shop
Transit HUB and Campus Entry

MASTER PLAN MODIFICATIONS
The garage as indicated in the Master Plan for the location now occupied by the Bauerle Road Garage was proposed to accommodate eight hundred (800) cars. Eight hundred cars was determined to be insufficient to meet the anticipated campus demand for this location and would not provide sufficient revenue relative to the required operational expenditures to be cost-effective. It was determined that a target goal as close as possible to one thousand two hundred (1,200) cars would be right-sized to meet the anticipated demand and provide the required revenue. The eight hundred car garage proposed in the Master Plan would have been five floors based upon the building footprint size indicated. Given an approximate floor to floor height of twelve (12) feet, which is typical for structured parking, the height of the garage would have been sixty (60) feet. This is equivalent to the height of the adjacent wing of the Main Building which contains four (4) floors with approximately fifteen (15) foot floor to floor heights. To avoid overwhelming the Main Building with a garage structure, which would have been approximately twenty-four (24) to thirty-six (36) feet taller to accommodate an additional four hundred (400) cars within the same footprint, the footprint of the Bauerle Road Garage was increased by one third by increasing the width of the structure by approximately sixty (60) feet. As the garage occupies the eastern most edge of the campus development, the garage footprint was expanded to the east without an adverse impact upon other future buildings proposed in the Long Range Plan. However, to accommodate the increase in the structure’s footprint the alignment of the segment of Bauerle Road, the perimeter loop road indicated in the Master Plan to the east of the garage was realigned to the east.

To provide the required vehicular access to the garage from the Peace Boulevard Entrance the segment of Bauerle Road was designed and constructed as part of the Garage Project. The construction of this segment of Bauerle Road resulted in the transformation of the existing intersection of Peace Boulevard and Tobin Avenue from a three way intersection to a four way intersection. Given the proximity of the intersection to the intersection of Peace Boulevard with the Loop 1604 frontage road it was not possible to place a stop sign or stop light for traffic on Peace Bou-
levard at the intersection with Tobin Avenue and Bauerle Road. It was anticipated that the increased points of conflict resulting from the addition of a fourth leg at the intersection and that the additional traffic resulting from the increased parking capacity would cause congestion and significantly impact safety. Therefore a roundabout was constructed at the intersection of Peace Boulevard, Tobin Avenue and Bauerle Road which has been extremely effective in controlling congestion and improving safety.

North Paseo Building
Area 176,000 gsf
Completion August 2014 (Projected)

BUILDING SYSTEMS
Concrete structure with brick and metal panel exterior

PROGRAM
Classrooms, computer labs and offices to support the Computer Science Program and research programs related to cyber security. Administrative offices to support a number of departments currently being housed off-premise.

MASTER PLAN MODIFICATIONS
None. The site occupied by UTSA is on the Edwards Aquifer Recharge and Contributing Zones. A recharge feature was identified, which is located to the south and west of the building and within the alignment of the proposed extension of Devine Road indicated in the Master Plan. The Texas Commission on Environmental Quality (TCEQ) has determined that this feature is significant and requires protection with a minimum fifty (50) foot setback. As a result the extension of Devine Road was removed from the project.
RESIDENTIAL AREA EAST

San Saba Hall
Area 187,300 gsf
Completion July 2013

BUILDING SYSTEMS
Metal stud structural frame and brick veneer

PROGRAM
618 bed student residence hall with common lounge spaces and other functional areas required to support student housing.

MASTER PLAN MODIFICATIONS
It was determined during programming that the preferred residence hall accommodation was a single occupancy room in a suite configuration in which a full bathroom was shared with another single occupant room. This configuration requires approximately 30% more space to provide an equal number of beds as the double occupancy configuration upon which the Master Plan had been based. As a result, to accommodate the 1,808 beds specified in the Housing Plan included in the Master Plan and to not exceed the Master Plan recommended four story height limit, modification was required to the building footprint configurations. Furthermore it was determined that the preferred student population for establishing a community for student life was between two hundred and fifty to three hundred and fifty students, but that the preferred student population to achieve operational cost effectiveness was a minimum of four hundred and fifty students. It was also determined that given the large adjacent open space indicated in the Master Plan for the recreation fields, it was preferable that at least some of the open space provided in the Residential District East should be allocated specifically to the use of the residents to foster a sense of community among residents of the hall. Finally the Master Plan footprints ... for the Residential District East which consisted of two wings accommodating approximately three hundred students each and organized around a central courtyard to establish a student community. The prototype also included a common entry for all six hundred residents to provide for the required operational efficiency. Although the Master Plan building footprints were replaced with the prototype, the block pattern and the biaxial connecting paths indicated in the Master Plan were maintained.
RECREATIONAL PLAYFIELDS

Recreation Field Complex-East
Area 3,053 gsf Buildings
Completion September 2013

PROGRAM
Replace the existing track and field practice facility with four artificial turf recreation fields and construct a new toilet room and storage facility.

MASTER PLAN MODIFICATIONS
None.
CAMPUS MASTER PLAN

FIGURE 1
Plan of the Existing West Campus 2009

FIGURE 2
Plan of the Existing West Campus 2014
Sculpture and Ceramics Graduate Studio

FIGURE 3
Sculpture and Ceramics Graduate Studio

FIGURE 4
Sculpture and Ceramics Graduate Studio

Existing UTSA Buildings 2009

Existing UTSA Buildings 2014

Key Plan

WEST CAMPUS
Sculpture & Ceramics Graduate Studio
Area 13,457 gsf
Completion April 2011

BUILDING SYSTEMS
Metal Building

PROGRAM
Graduate sculpture and ceramics studios and exhibition space.

MASTER PLAN MODIFICATIONS
The Master Plan suggested location for this facility was an addition to the existing Sculpture/Ceramics Building, however it was determined that a free standing building would better serve the programmatic needs. The facility was designed and constructed such that no further modifications to the Master Plan are required.
PARK WEST

Park West Athletics Complex Phase I
Area 27,120 gsf Buildings
Completion July 2013

BUILDING SYSTEMS
Steel structure with metal panel and brick exteriors

PROGRAM
Track and Field Stadium with competition facilities appropriate for certification by IAAF and initial seating for 1,000; Soccer Stadium with competition facilities as per NCAA rules and initial seating for 1,000; Press Box and Fan Amenities Building.

MASTER PLAN MODIFICATIONS
During programming it was determined by UTSA Athletics that a single press box with two “fronts” capable of serving both the Track and Field and Soccer Stadiums would be desirable. To accommodate this programming change, the Master Plan was modified to place the two stadiums side by side rather than end to end as had been indicated in the 2009 Master Plan. The Track and Field Stadium was shifted to the west where the parking area had been proposed. The parking area was shifted to the south where the Soccer Stadium had been proposed and the Soccer Stadium was shifted to the north and east to the approximate location of original Track and Stadium location. During the drainage analysis it was determined that a large detention basin was required to avoid a negative downstream impact upon the adjacent residential neighborhood. To secure City of San Antonio funding for the project infrastructure, the design of the central roadway, which will become Kyle Seale Road, was modified from a three lane road with a right angle turn near the intersection with the Loop 1604 frontage road indicated in the 2009 Master Plan to a four lane divided road that transitioned from a generally north/south direction to a generally northwest/southwest direction with a large radius curve.
THE LONG RANGE PLAN 2009

Although the 2009 UTSA Campus Master Plan remains in effect and is anticipated to remain in effect for at least the next five years there have been several minor modifications made to the Long Range Plan as a result of accommodations for program needs related to the development of some of the capital projects and institutionally managed projects which have been completed since the Board of Regents approved the Campus Master Plan in 2009. In addition, needs have been identified that were not anticipated in the Long Range Plan and conflicts between the Long Range Plan and both existing campus infrastructure and environmental features have been discovered with the result that certain aspects of the Long Range Plan were determined to be infeasible. These discoveries have resulted in further minor modifications to the 2009 Campus Master Plan. Following is a summary by district of the modifications that have been made to the Campus Master Plan since 2009.
FIGURE 1
The Long Range Plan for Main Campus 2009

FIGURE 2
The Long Range Plan for Main Campus 2014

- Existing UTSA Buildings
- Proposed UTSA Buildings
<table>
<thead>
<tr>
<th>Building Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Building</td>
<td>1</td>
</tr>
<tr>
<td>John Peace Library</td>
<td>2</td>
</tr>
<tr>
<td>Business Building</td>
<td>3</td>
</tr>
<tr>
<td>Arts Building</td>
<td>4</td>
</tr>
<tr>
<td>McKinney Humanities Building</td>
<td>5</td>
</tr>
<tr>
<td>Multidisciplinary Studies Building</td>
<td>6</td>
</tr>
<tr>
<td>Flawn Sciences Building</td>
<td>7</td>
</tr>
<tr>
<td>Engineering Building</td>
<td>8</td>
</tr>
<tr>
<td>Biosciences Building</td>
<td>9</td>
</tr>
<tr>
<td>Biotechnology Sciences and Engineering Building</td>
<td>10</td>
</tr>
<tr>
<td>Engineering Building II</td>
<td>11</td>
</tr>
<tr>
<td>University Center I and II</td>
<td>12</td>
</tr>
<tr>
<td>H-E-B University Center</td>
<td>13</td>
</tr>
<tr>
<td>South Thermal Energy Plant/ Ximenes Ave. Garage</td>
<td>14</td>
</tr>
<tr>
<td>Physical Education Building</td>
<td>15</td>
</tr>
<tr>
<td>Convocation Center</td>
<td>16</td>
</tr>
<tr>
<td>Recreation and Wellness Center</td>
<td>17</td>
</tr>
<tr>
<td>North Thermal Energy Plant</td>
<td>18</td>
</tr>
<tr>
<td>Bosque Street Building</td>
<td>19</td>
</tr>
<tr>
<td>Laurel Village</td>
<td>20</td>
</tr>
<tr>
<td>Tobin Avenue Garage</td>
<td>21</td>
</tr>
<tr>
<td>Roadrunner Cafe</td>
<td>22</td>
</tr>
<tr>
<td>Chisholm Hall</td>
<td>23</td>
</tr>
<tr>
<td>Chaparral Village</td>
<td>24</td>
</tr>
<tr>
<td>Margaret Batts Tobin Laboratory Building</td>
<td>25</td>
</tr>
<tr>
<td>Not Used</td>
<td>26</td>
</tr>
<tr>
<td>Not Used</td>
<td>27</td>
</tr>
<tr>
<td>Science Research Laboratories</td>
<td>28</td>
</tr>
<tr>
<td>Research Laboratories (Demolish)</td>
<td>29</td>
</tr>
<tr>
<td>Sculpture/Ceramics</td>
<td>30</td>
</tr>
<tr>
<td>Business Service Annex (Demolish)</td>
<td>31</td>
</tr>
<tr>
<td>Central Receiving and Warehouse</td>
<td>32</td>
</tr>
<tr>
<td>Center for Archaeological Research</td>
<td>33</td>
</tr>
<tr>
<td>Facilities Warehouse (Demolish)</td>
<td>34</td>
</tr>
<tr>
<td>Facilities Services Building</td>
<td>35</td>
</tr>
<tr>
<td>Child Development Center (Demolish)</td>
<td>36</td>
</tr>
<tr>
<td>University Oaks Apartments (Demolish)</td>
<td>37</td>
</tr>
</tbody>
</table>
The Long Range Plan for Central Campus
2014
38 Sculpture & Ceramics Graduate Studio
39 Plaza Norte Building
40 Baurele Road Garage
41 San Saba Hall
42 North Paseo Building

FIGURE 1
The Long Range Plan for Central Campus 2009

FIGURE 2
The Long Range Plan for Central Campus 2014

Existing UTSA Buildings
Proposed UTSA Buildings
LEON CREEK NORTH

As a result of providing an enlarged block area to accommodate the increased width of the Bauerle Road Garage, the block indicated in the Master Plan directly to the north of the Garage was also increased. This increase in block size allows for an increase in the total building footprint area for this block, which has been indicated in the 2014 Campus Master Plan Update Long Range Plan. Additionally, as the site occupied by UTSA is directly above the Edwards Aquifer Recharge and Contributing Zones, a recharge feature located on the southwest corner of this block requires protection. This has also been accommodated in the 2014 Campus Master Plan Update by a modification to the footprint to provide for the minimum fifty foot (50’) setback as mandated by TCEQ.
There have been three modifications to the Master Plan in the Residential Area East District. The first modification to the District Plan is a result of planning for San Saba Hall. The District Plan modification developed for the San Saba Hall project was based upon the use of a prototype conceived to address Housing’s programmatic requirements. The housing prototype developed for the District Plan is based upon a four-story courtyard building type which accommodates approximately three hundred beds. Four of these courtyard buildings are paired in combination with a central entry hall and shared entrance. The remaining two courtyard buildings will stand alone with individual entries. The courtyard buildings have been configured in the revised District Plan for the Residential Area East to maintain the original street pattern, overall block dimension and bi-axial pedestrian circulation paths as indicated in the Master Plan, and to retain the footprint for the replacement building for the Physical Education Building.

The second modification to the District Plan is a result of existing electrical infrastructure located on the south side of the North Thermal Energy Plant, which supports the operation of the Plant. It was determined that relocation of this existing electrical infrastructure would not be economically feasible. The alignment of Devine Avenue was modified for the segment in the middle of the block between Cook Road and Brennan Avenue to accommodate the existing infrastructure but the location of the intersection with these streets was maintained as indicated in the Master Plan.

The third modification to the District Plan for the Residential East is a result of a recently emergent programmatic need. The campus is currently served with regard to deliveries to the University by the Central Receiving Warehouse. However, the existing Central Receiving Warehouse is located in the Maverick Creek Floodplain. It is located well within the campus boundary which requires trucks to travel far into the campus. Also, the existing facility does not have a loading dock to facilitate the off-loading of semi-trailer trucks. As a new warehouse to serve the Purchasing and Distribution Department was not anticipated in the Master Plan, the District Plan for the Residential Area East has been modified to incorporate a new warehouse to address the issues with the current facility and location.
RECREATIONAL PLAYFIELDS

Other than the field layout varying from the diagrammatic field layout indicated in the Master Plan no modifications have been made to this District Plan.
Other than the Sculpture and Ceramics Graduate Studio being erected as a free-standing facility rather than as an addition as indicated in the Mater Plan, no modifications have been made to this District Plan.
As a result of site plan modifications made during Phase I of the Park West Athletic Complex, the following modifications to the Master Plan have been made. The side-by-side placement of the Track and Field and Soccer Stadiums required the shifting of the secondary north-south road alignment to the east. Consequently, the proposed road will not align with the existing city road, Waller Road, south of Hausman Road as originally indicated in the Master Plan. As Hausman Road is being reconstructed as a divided road with a center median, the non-alignment would typically preclude a left turn ingress and egress for the secondary road. However, through negotiations with the City of San Antonio, UTSA was able to secure in the design of Hausman Road a left turn ingress and egress from the secondary road. Additionally, the new alignment for the secondary north-south road conflicts with a recharge feature in Huesta Creek. This feature was determined to be significant by TCEQ and requires a minimum setback of fifty feet (50) and includes a possible setback of two hundred feet (200) in the direction of flow. UTSA submitted an exception request to place a bridge support within the setback area. TCEQ granted the exception; however, extensions must be filed every six months to retain this development right until at least fifty percent is developed.

The requirement for a detention basin displaced the tennis courts from the southeast corner of the site to the western edge of the site. As the Football Stadium proposed in the 2009 Campus Master Plan required the acquisition of property and given the University has an agreement in place that provides for the use of the Alamodome for UTSA Football games, the proposed stadium has been removed from the Campus Master Plan.
FIGURE 1
Long Range Plan for Electrical Distribution for Central Campus

Schematic diagram based on Burns and McDonnell Utilities Master Plan March 2012
FIGURE 1
Existing Communications Distribution for Central Campus
Existing Communication Ductbank and Manholes
Existing Communication Terminations
Security Cameras, Phones, etc.
Easements
FIGURE 1
Long Range Plan for Communication Distribution for Central Campus

- Existing Communication Line with Manholes
- Proposed Communication Line with Manholes
- Easements

Schematic diagram based on 2009 Master Plan
FIGURE 1
Existing Water Distribution for Central Campus

- Existing UTSA Water Line
- Existing SAWS Water Line
- Existing Water Manholes
- Easements
FIGURE 1
Long Range Plan for Water Distribution for Central Campus

Schematic diagram based on Pape-Dawson Potable Water and Sanitary Sewer Study
May 2011
FIGURE 1
Existing Natural Gas Distribution for Central Campus

Existing Natural Gas Line
Easements
FIGURE 1
Lone Range Plan for Natural Gas Distribution for Central Campus

Existing Natural Gas Line with Valves
Future Natural Gas Line with Valves
Easements

Schematic diagram based on Burns and McDonnell Utilities Master Plan March 2012
FIGURE 1
Existing Thermal Utility Distribution for Central Campus

- Existing Steam
- Existing Chilled Water
- Existing Hot Water
- Easements
FIGURE 1
Long Range Plan Thermal Utilities Distribution for Central Campus

Existing Steam
Existing Chilled Water
Existing Hot Water
Future Chilled Water
Future Hot Water
Easements

Schematic diagram based on Burns and McDonnell Utilities Master Plan
March 2012
FIGURE 1
Existing Sanitary Sewer System for Central Campus

- Existing Sanitary Sewer Mains
- Existing Sanitary Sewer Manholes
- Easements
FIGURE 1
Long Range Plan for Sanitary Sewer System for Central Campus

Schematic diagram based on Pape-Dawson Water and Wastewater Master Plan Study
May 2011
FIGURE 1
Existing Storm Sewer Systems for Central Campus

- Existing Storm Sewer Culverts
- Existing Storm Sewer Inlets
- Existing Storm Sewer Discharge
- Existing Storm Sewer Culverts
- Easements
FIGURE 1
Long Range Plan for Storm Sewer Systems For Central Campus

Existing Storm Sewer Distribution
Future Storm Sewer Distribution
Easements

Schematic diagram based on 2009 Master Plan
Figure 1
Existing Easements for Central Campus

- City of San Antonio Fire Station Easement
- TXDOT Drainage Easement
- Grey Forest Gas Easement
- City Public Service Gas Easement
- City Public Service Electrical Yard Easement
- San Antonio Water Systems Sewer Easement
FIGURE 1
Existing Electrical Distribution for Park West

Existing Electrical Ductbank

FIGURE 2
Existing Water Distribution for Park West

Existing Water Line
FIGURE 1
Existing Gas Distribution for Park West
- Existing Gas Lines

FIGURE 2
Existing Sanitary Sewer system for Park West
- Existing Sewer Line
FIGURE 1
Existing Storm Sewer System for Park West

- Storm Sewer Culverts
- Storm Sewer Open Drainage
- Storm Detention Basin
- Storm Sewer Inlet

FIGURE 1
Existing Easements for Park West

- Drainage Easement
- City Public Service Electrical and Gas Easements
- San Antonio Water Systems Water Easement
- San Antonio Water Systems Sewer Easement
- City of San Antonio Road Easement
Several Environmental Systems have been updated since the 2009 Master Plan. The following describes these systems and each of their impacts to the Master Plan.

MAIN CAMPUS FLOODPLAIN

The Main Campus has three floodplains that impact the Master Plan. The Central Campus has the Maverick Creek Floodplain on the western edge, and the Leon Creek Floodplain on the eastern edge. The Park West Campus has the Huesta Creek Floodplain flowing in two tributaries which converge within its boundary. The boundaries of all three floodplains were modified by the Federal Emergency Management Agency (FEMA) in 2012.

Maverick Creek Floodplain
- Area W1 on the exhibit, page 54, Figure 1, Floodplain designated by FEMA in 2012, indicates an area of significant reduction in the floodplain.
- Although there were several modifications to the floodplain boundary, including reductions to the floodplain area, there continue to be overlaps between the floodplain and proposed Master Plan development in several locations. Development of these areas will require that FEMA approve a Letter of Map Revision (LOMR).

Leon Creek Floodplain
- Areas E1, E2, and E3 noted on exhibit, Figure 1, Floodplain designated by FEMA in 2012, were remapped through the LOMR process for the Bauerle Road Garage project effective February 6, 2012.
- Area E1 illustrates the removal of a small portion of the area, now occupied by the Bauerle Road Garage and Bauerle Road, from the floodplain.
- Area E2 illustrates the removal of a portion of the remaining parking area, the Main Building and Bauerle Road from the floodplain.
- Area E3 indicates a significant reduction to the floodplain because the LOMR prepared for the Bauerle Road Garage Project validated elevation information where previously FEMA had based hydraulic analysis upon approximated elevations rather than using survey data.

Huesta Creek Floodplain

The Huesta Creek Floodplain, located on the Park West section of the Main Campus, is currently being revised due to the development of Phase I of the Athletics Complex. A Conditional Letter of Map Revision (CLOMR) was submitted to FEMA and accepted prior to development. The final elevation points will be submitted to FEMA in a LOMR by the end 2014. The net change in the developable land area due to the changes to the floodplain will be minimal. There will be overlaps between the floodplain and proposed Master Plan development in several locations.

Main Campus Water Quality

To date there have been minimal changes to the water quality plan for the Main Campus since the 2009 Campus Master Plan. The primary change to the water quality plan is related to the development of the Park West Campus south of Huesta Creek. The 2009 Long Range Plan indicated nine basins at Park West. The 2009 Campus Master Plan included a plan for basin locations on the Park West Campus which indicated four watershed areas and four corresponding basins south of Huesta Creek. However, Phase I of the Park West development varied from the Long Range Plan in the 2009 Campus Master Plan. In the Phase I development, for the area south of Huesta Creek, stormwater treatment was calculated as one watershed containing two phases of development: east of Kyle Seale Road and west of Kyle Seale Road. Phase I development focused on the area east of Kyle Seale Road. This development was treated through a regional approach with a water quality basin (WQBB) located on the eastern edge of the property. Additionally, although the university is not legally obligated to detain water, a detention basin was also constructed adjacent to the water quality basin to minimize the effects of the development of Park West on existing and future development downstream. On the Main Campus, water quality basins (WQBs) made of earthen sides with a sand filter base have been used to provide treatment of stormwater. Maintenance of these basins is costly due to subsidence, slipping liners, loss of grass on slopes as well as costs associated with personnel to maintain sand medium, mow, grass, pick-up trash, repair under-piping failures and other associated work. For this reason, the new Park West water quality basin (WQBB) was constructed of concrete. Although concrete basins are initially more expensive, it is thought that maintaining this basin over time will prove to be cost effective. This update shows no change to the water quality plan for the area of the Park West Campus north of Huestra creek.

The Central and East Campus currently have seven WQBs. As future development increases the amount of impervious cover, existing credit capacity will be used. Where existing capacity does not exist to support new development new basins may be required. This is especially significant at the Central Main Campus where existing credit capacity is low.

Proposed Water Quality Treatment Plan Reset

To provide regional treatment to these small areas on the west and east sides of the Central Campus since a basin is not cost effective in such small areas. Additionally, previous Texas Commission on Environmental Quality (TCEQ) rules, which are no longer applicable, allowed resourceful solutions to stormwater treatment by alternatively treating previously untreated impervious cover (IC) installed prior to rules requiring treatment, in lieu of treating proposed impervious cover. As an alternative to these regional engineered watersheds, the University has initiated a study to recalculate all drainage areas in an attempt to more adequately distribute treatment capacity amongst the seven existing Central Campus treatment basins.

This method would effectively "reset" the campus water quality abatement by taking into account that all the engineered watersheds on campus ultimately drain into the Leon Creek Watershed. As a part of this plan, the university will remove many of the existing, smaller Vegetative Filter Strips (VFS) which are costly to maintain and use valuable land area that could...
be used to support university functions, by exchanging their Total Suspended Solid (TSS) removal loads to regional basins. The reset, if accepted by TCEQ, would allow for cross-campus treatment of impervious cover which provides treatment in those areas where currently no basin is available.

MAIN CAMPUS RECHARGE FEATURES

Since the 2009 Master Plan, four Sensitive Recharge Features on the Main Campus (three on the Central Campus and one at Park West) have been designated by the TCEQ and have become subject to their regulation. TCEQ required these sensitive features to be protected by natural area buffers. The protection buffers are indicated on the Geological, Cultural and Critical Habitat Exhibits page 56, Figure 1 and page 57, Figure 2. The fifty-foot (50’) natural buffer for Feature S-3 could impact the Master Plan as its buffer is located over the future Devine Road extension. Feature F-65 has a fifty-foot (50’) natural buffer which will impact a future Master Plan building.

Geological feature S-37, consisting of multiple permeable fractures found during the geological assessment of Park West, is outside the development area of both the Phase I Development and future development at Park West. Therefore, a protective buffer was not immediately implemented by the TCEQ. Although these features can have no less than a minimum fifty-foot (50’) natural buffer zone, the TCEQ can impose up to a two hundred foot (200’) natural buffer in the direction of flow for the area which contributes to infiltration of the feature. In anticipation of a future protective buffer, the university presented the TCEQ with a Request for Exemption to allow select development within the Natural Buffers. The exemption request specified required Best Management Practices (BMPs) for the protection of the features such as rock berms and up gradient protective stormwater protection, but allowed bridge footings within natural buffers so the Master Plan road could be developed. Feature S-37 and a potential 200 foot buffer in the direction of contributing flow are depicted in the Park West Exhibit page 57, Figure 2.

ENDANGERED SPECIES

The 2009 Master Plan proposed a karst preserve and suggested that the university seek an Environmental Assessment/ Habitat Conservation Plan (EA/HCP) to include an Incidental Take Permit or 10(a)(1) (B) Permit. After consideration, the university elected not to pursue the karst preserve or seek an EA/HCP. In 2012, the U.S. Fish and Wildlife Service (USFWS) re-evaluated critical habitat for the nine Bexar County invertebrates known to occupy caves in areas of karst terrain. USFWS determined the UTSA Main Campus fit their profile of areas for recovery of the species. As such, USFWS increased the 40 acre critical habitat on the east side of the Main Campus shown in the 2009 master plan to a 105 acre Critical Habitat Unit (CHU). USFWS Findings were effective March 15th, 2012. The CHU increase is shown on the Main Campus Exhibit.

CULTURAL LANDMARKS

The university had a campus wide cultural study done in 2005. There are three areas shown on the Environmental Systems Exhibit page 56, Figure 1, where the archeological evidence was determined to warrant a recommendation for these areas to be cultural landmarks. None of these areas impact the 2009 Master Plan.
FIGURE 1

Floodplain Designated by FEMA 2012 for Central Campus

Maverick Creek Floodplain 1
Leon Creek Floodplain 2

Decrease of Floodplain (2012)
No Change in Floodplain from 2009
2012 Increase in Floodplain
2012 Increase in Moderate Flooding
Areas of Interest to Master Plan
FIGURE 1
Water Quality for Central Campus

- Existing TCEQ Drainage Watershed
- Ximenes Watershed
- West Campus Watershed
- Existing TCEQ Water Quality Basins
- Vegetative Filter Strips

UTSA MAIN CAMPUS
CAMPUS MASTER PLAN

FIGURE 1
Geological, Cultural and Critical Habitat for Central Campus

- 2009 Critical Habitat
- 2014 Critical Habitat
- Geological Feature Occupied/Sensitive
- Geological Feature Not Occupied/Sensitive
- Fault (Sensitive Feature)
- Cultural Landmark Warrants Landmark Designation
- TCEQ Imposed Natural Buffer Recharge Feature (No Disturbance)
- Easements

Geological Feature

Occupied/Sensitive

Fault (Sensitive Feature)

Easements
FIGURE 1
Water Quality for Park West

- 2014 Watershed
- 2009 Watersheds
- Water Quality Basins

FIGURE 2
Geological for Park West
- Significant Recharge Fractures
- Potential Natural Buffers
 Will be defined at future date