APPENDIX: ERROR ANALYSIS

Sources of Error:

Experimental measurements are usually associated with three types of errors:

1. Personal error (mistakes you have made, time to redo!)
2. Systematic errors (consistent in repeated measurements)
3. Random error (uncertainty; an unexplainable variation in experimental conditions)

Errors in the first type can be reduced by carefully following directions, careful measurement techniques and data analysis. Errors of type 2 occur in the same direction in repeated measurements. These can be hard to detect but can be minimized by choosing appropriate testing conditions. An example would be a stopwatch running slow. This could be minimized by replacing the battery (to get it to run at the appropriate speed again) or further reduced by purchasing a better timer suited for the experiment or conditions. Errors of type 3 may occur in any direction, sometimes the measurement may be an overestimate, other times an underestimate. Illustrated below in figure A1 is an example of systematic error vs random error.

![Figure A1: Systematic Error vs Random Error](image_url)

To reduce errors of Type 3, you must repeat the experiment creating a mean or average value. This mean value is considered the best or most reliable value. How reliable is it? This can be determined by the standard deviation and/or the standard error of the measurements.

Mean and Standard Deviation

The mean value can be described as the average value expressed as:

\[
\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{\sum_{i=1}^{N} x_i}{N}
\]

Equation A1

The accuracy of the measurements for \(x_i\) is determined in terms of the standard deviation \(\sigma_x\).

Standard deviation is defined as:

\[
\sigma_x = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}
\]

Equation A2.
Reporting Errors

There are three standard methods for reporting the uncertainty, Δx (also sometimes known as δx), in the measurement of a quantity x:

1. Using fraction uncertainty: $\Delta x/x$
2. Using percentile uncertainty: $\Delta x \times 100\%$
3. Using absolute uncertainty (Δx) as follows: $x(\text{measured}) = \bar{x} \pm \Delta x$

The third way of reporting error, absolute uncertainty, implies that the measurement falls between the average or best measurement plus or minus its standard deviation (its highest or lowest possible values). Using these, we get a more familiar way of reporting uncertainty:

$$\frac{\text{% error in } x}{x} = \Delta x \times 100\% = \frac{|x(\text{measured}) - x(\text{accepted})|}{x(\text{accepted})} \times 100\% \quad \text{Equation A3}$$

The quantity Δx is taken to be the standard deviation of the mean, and can be calculated by,

$$\Delta x = \frac{\sigma_x}{\sqrt{N}} = \sqrt{\left[\frac{1}{N(N-1)} \sum_{i=1}^{N}(x_i - \bar{x})^2 \right]} \quad \text{Equation A4}$$

Linear Regression (Linear Least Square Fit)

For your physics labs (and probably other labs as well), you often measure x_i (independent variable) and y_i (dependent variable) where these quantities are related through the usual linear equation:

$$y_i = Mx_i + C \quad \text{Equation A5}$$

One can plot the y_i data points verse the x_i points and draw a “best fit straight line” with a ruler through the data points. This is only a qualitative best fit as there was no math involved. The method of linear regression provides a true and precise mathematical procedure for finding the best-fit line similar to what is found in computer programs such as excel or origin.

Due to uncertainty of measurements,

$$y_i - Mx_i + C = \Delta y_i \neq 0 \quad \text{Equation A6}$$

In linear regression, the best fit straight line is obtained by optimizing the slope M and the intercept C, which by default will lead to a minimum value of Δy_i. This is done by minimizing a function termed “Chi-squared” χ^2, where

$$\chi^2 = \sum_{i=1}^{N} \frac{\Delta y_i^2}{\sigma_y^2} = \frac{(y_i - Mx_i + C)^2}{\sigma_y^2} \quad \text{Equation A7}$$

Where σ_y is the standard deviation mentioned in equation A2.

$$\sigma_y = \sqrt{\frac{\sum(y_i - \bar{y})^2}{N-1}}$$

Once reduced, we can solve for the unknown values which are important, M, the slope, and C, the y-intercept.

$$M = \frac{N \sum xy - \sum x \sum y}{D} \quad \text{Equation A8}$$

$$C = \frac{\sum x^2 \sum y - \sum x \sum xy}{D} \quad \text{Equation A9}$$

Where D, the denominator is:

$$D = N \sum x^2 - \left(\sum x\right)^2$$