Venturi Apparatus
Table of Contents

Equipment ... 3
Introduction ... 4
Theory ... 4
Experiment ... 4
Pre-Setup Measurements 4 Setup 5 Procedure 5 Analysis 5 Further Analysis 6 Clean-up 6 Storage 6

Appendix A: Quad Pressure Calibration 7
DataStudio 7 Xplorer GLX (Standalone Mode) 7

Appendix B: Fluid Supply and FlowRate Measurement Options 8
Air 8
Water 10

Appendix C: Constants ... 13

Technical Support ... 14

Material Safety Data Sheet .. 15
Venturi Apparatus

Included Equipment Part Number

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Equipment</th>
<th>Air Method: Recommended Equipment</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Venturi Apparatus base and top plate ME-8598 Spirometer Sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>T-knob Screws (qty. 8) 617-024 One of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Spirometer Tubing, 2.5 cm ID, 15 cm long 640-053 Shop Vacuum (or similar air supply)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Rubber Stoppers, 1-hole (qty. 2) 648-09597 Balloon and balloon pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Restriction Clamps (qty. 2) 640-052 Water Method: Recommended Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Fluid Tubing, 6 mm ID, 6 m long 640-012 Water Reservoir (or similar container) ME-8594 Required Equipment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Container to catch water

- Quad Pressure Sensor PS-2164 Table Clamp ME-9472 PASPORT Interface
- See PASCO 120 cm rod ME-8741

Additional Equipment

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Three-finger clamps SE-9445</td>
</tr>
<tr>
<td></td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>Motion Sensor PS-2103</td>
</tr>
<tr>
<td></td>
<td>Rotary Motion Sensor PS-2120</td>
</tr>
<tr>
<td></td>
<td>Force Sensor PS-2104</td>
</tr>
<tr>
<td></td>
<td>Stopwatch SE-8702B</td>
</tr>
</tbody>
</table>

1. See page 8 for more information. 2. The use of this sensor and the Quad Pressure Sensor simultaneously requires a multi-port PASPORT Interface (such as Xplorer GLX or PowerLink) or two single-port interfaces. 3. See pages 8–10 for more information. 4. See pages 10–13 for more information. 5. PASPORT interfaces include Xplorer GLX (PS-2002), PowerLink (PS-2001), AirLink (PS-2005), Xplorer (PS-2000), and USB Link (PS-2100)
Introduction

In the Venturi Apparatus, air or water flows through a channel of varying width. As the cross-sectional area changes, volumetric flow rate remains constant, but the velocity and pressure of the fluid vary. With a Quad Pressure Sensor connected to the built-in Pitot tubes, the Venturi Apparatus allows the quantitative study and verification of the Continuity Equation, Bernoulli’s principle, and the Venturi effect.

The model ME-8598 Venturi Apparatus includes the connectors and tubing needed for doing the experiment with either air or water. This manual contains complete experiment instructions, including several options for fluid supply and flow-rate measurement.

Theory

An incompressible fluid of density ρ flows through a pipe of varying diameter (see Figure 1). As the cross-sectional area decreases from A_0 (large) to A (small), the speed of the fluid increases from v_0 to v.

The flow rate, R, (volume/time) of the fluid through the tube is related to the speed of the fluid (distance/time) and the cross-sectional area of the pipe. The flow rate must be constant over the length of the pipe. This relationship is known as the Continuity Equation, and can be expressed as

\[R = A_0 v_0 = A v \]

(eq. 1)

As the fluid travels from the wide part of the pipe to the constriction, the speed increases from v_0 to v, and the pressure decreases from P_0 to P. If the pressure change is due only to the velocity change, Bernoulli’s Equation can be simplified to:

\[P_0 = P + \frac{1}{2} \rho (v^2 - v_0^2) \]

(eq. 2)

Experiment

This experiment can be conducted with either air or water. Appendix B contains equipment lists and instructions specific to each method.

Note: You can use a PASPORT interface (or interfaces) connected to a computer running DataStudio software or on an Xplorer GLX interface in standalone mode (without a computer). For instructions on collecting, graphing, and analyzing data, press F1 to open DataStudio on-line help, or see the Xplorer GLX Users’ Guide.

Pre-Setup Measurements

Remove the top plate from the apparatus. Measure the depth of the channel and the widths of the wide and narrow sections. Calculate the largest cross-sectional area (A_L) and the smallest cross-sectional area (A_S).
Model No. ME-8598 Experiment

5 Setup

1. Connect the Quad Pressure Sensor to your PASPORT interface (but do not connect tubing to the pressure ports yet). If you are using a computer, start DataStudio.
2. Calibrate the Quad Pressure Sensor (see Appendix A).
3. Connect each of the four pressure tubes extending from the underside of the apparatus to the ports of the Quad Pressure Sensor as indicated in Figure 2.

Important: Do not allow water to enter the sensor. Ensure that there is no water near the sensor end of the pressure tubes.

4. Place the top plate on the apparatus and secure it with eight T-knob screws. Tighten the screws no more than necessary to prevent leaking.

5. Set up the fluid supply and flow-rate measurement as described in Appendix B.

Procedure

1. Start fluid flow.
2. Start data collection on the computer or interface.
3. Continue data collection while observing the pressure measurements on a graph display. Obtain a few seconds’ worth of good data before stopping data collection and fluid flow.

Analysis

1. View your data on a graph of pressure versus time.
2. Select a time interval of about 2 seconds in which all of the pressure measurements are relatively clean (though not necessarily constant or noise-free).
3. Within this time interval, determine the average of each pressure measurement: P_1, P_2, P_3 (and P_4 if you will do the Further Analysis below).
4. Over the same 2-second interval, determine the average flow rate, R.
5. If there were no friction or turbulence in the channel, the pressures in both wide sections (P_1 and P_3) would be equal; however, you will find that this is not the case. Because the channel is symmetrical about Point 2, you can estimate the pressure lost at Point 2 due to friction and turbulence by assuming that it is half of the pressure lost between Point 1 and Point 3. In other words, if the tube were
straight, the pressure at Point 2 would be the average of \(P_1 \) and \(P_3 \). Calculate this theoretical pressure:

\[
P_o = \frac{P_1 + P_3}{2}
\]

(eq. 3)

1. Use the measured flow rate, \(R \), and Equation 1 to calculate the fluid speed in the wide parts of the tube (\(u_o \)), and the speed in the venturi constriction (\(u \)).
2. Use these values of \(u_o \) and \(u \) and Equation 2 to calculate the theoretical pressure \((P) \) in the venturi constriction. Compare this to the actual pressure measured by the sensor \((P_2) \).

Further Analysis

Repeat the analysis above for Points 2, 3, and 4.

Clean-up

1. Allow the water reservoir to run empty. Tilt the apparatus to empty water from it.
2. With the apparatus empty of water, disconnect the pressure tubes from the sensor. (Leave the tubes connected to the underside of the apparatus.)
3. Remove the top plate from the apparatus. Allow the apparatus and tubing to dry completely.

Storage

Store the apparatus with the top plate loose with the Popsicle sticks as braces to avoid permanently deforming the seal.

Table 1. Volume flow at various points

<table>
<thead>
<tr>
<th>Depth(cm)</th>
<th>Width(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations: Hint, look at appendix C.
Analysis:
1. What happened to the pressure in the narrow gaps (point 2 and point 4)? Does this make sense?

2. What happened to the pressure in the wide parts, (point1 and point3)? Does this make sense?

3. How did the velocities change at the 4 points along the path downstream?

4. Compare the velocities and pressures and the 4 points. What did you notice about the relationship between pressure and velocity?
Appendix A: Quad Pressure Calibration

The purpose of this calibration is to fine-tune all four pressure measurements so they read the same when exposed to the atmosphere. This will allow the small pressure differences that occur in the apparatus to be measured more accurately.

Conduct this procedure with all four pressure ports exposed to the same pressure.

DataStudio

1. Click the **Setup** button to open the **Experiment Setup** window.
2. Click the **Calibrate Sensors** button to open the calibration window (see Figure 3).
3. At the top of the **Calibrate Sensors** window, select **Quad Pressure Sensor**.
4. Select the **Calibrate all similar measurements simultaneously** option.
5. Select the **1 Point (Adjust Offset Only)** option.
6. Click **Read From Sensor** (in the Calibration Point 1 section of the window).
7. Click **OK**.

![DataStudio Calibration Window](image)
Appendix B: Fluid Supply and Flow Rate Measurement Options

You can conduct the experiment using air or water as the fluid. In either case, you have a range of options for how to handle the fluid and how to measure the flow rate. Some of the possibilities are described in this appendix.

In many of these setups, a PASPORT sensor is used to measure the flow rate. You can connect this sensor and the Quad Pressure Sensor to a single multi-port interface (such as the Xplorer GLX or PowerLink) or use two single-port interfaces connected to your computer. If you have only one single-port interface, measure the flow rate and pressures in two separate data runs.

Air

Air Supply Method 1: Shop Vacuum

Included Parts Required
- Rubber stopper with hole

Other Parts Required
- Shop vacuum or similar air supply

This method will typically produce a flow rate of 2 L/s or more.

Use a shop vacuum cleaner (Shop-Vac® brand or similar) as an air supply. Almost any model will work, but one that has a hose connection for blowing air out may be preferable since it can push (as well as suck) air through the apparatus. Air supplies designed for airtracks will work, but they may produce less air flow than a shop vacuum.

The Venturi Apparatus includes two rubber stoppers with holes. Use one of them to connect the hose of the shop vacuum to the inflow port of the apparatus (see Figure 5). Connect the hose to the air-blowing port of the shop vacuum.

To measure airflow, connect a spirometer sensor as described on page 9.

Note: Observe the correct direction of airflow through the apparatus indicated in Figure 5. If you will be using the shop vacuum to suck air through the apparatus, connect it to the outflow port, and connect the spirometer to the inflow port.

![Figure 5: Setup for air with a shop vacuum](image)
Air Supply Method 2: Balloon

Included Parts Required

- Rubber stopper with hole
- Short piece of fluid tubing (about 10 cm)
- Restriction clamp

Other Parts Required

- Rubber balloon
- Balloon pump (available at party supply stores)

This method will produce a flow rate of about 0.5 L/s.

Stretch the mouth of the balloon around the rubber stopper. Insert the piece of fluid tubing into the hole in the stopper. Place the restriction clamp on the tubing. Use a pump to inflate the balloon through the tubing. Close the clamp to hold the air in the balloon. Remove the pump, and connect the tubing to the inflow port of the apparatus. Figure 6: Balloon (see Figure 7). Open the clamp to start the flow of air.

To measure airflow, connect a spirometer sensor as described below.

Note: Using a pump to inflate the balloon ensures that the air will be relatively dry. A balloon inflated by mouth will introduce moisture into the apparatus.

Measurement

In this method, a Spirometer sensor measures the airflow rate.

Included Parts Required

- Rubber stopper with hole
- Spirometer tubing (15 cm long, 2.5 cm inside diameter)

Other Parts Required Part Number

- Spirometer Sensor PS-2152

Use the PASCO Spirometer sensor to measure airflow rate. The Spirometer is primary designed for measuring airflow in and out of a person’s lungs, but works well to measure the airflow through the Venturi Apparatus.

Insert the rubber stopper into the rubber spirometer tubing, and connect the stopper to the outflow port of the apparatus. Insert the mouthpiece of the spirometer into the
other end of the spirometer tubing (see Figure 5 or 7). Assemble the mouthpiece and spirometer handle, and connect the spirometer to your PASPORT interface.

The spirometer automatically calibrates itself every time you start data collection. During the first few seconds of data collection, it must remain still and away from air currents. A red WAIT light and green READY light illuminate to indicate when the sensor is calibrating and when it is ready to measure air flow. Start data collection (by pressing or clicking the Start button) with the air supply off, and wait until the spirometer is ready before turning the air supply on.

Water

Water Supply

Included Parts Required

- Fluid tubing (at least 1.5 m)
- 2 restriction clamps

Other Parts Required or Recommended Part Number

- Water Reservoir (or other container of at least 1 liter) ME-8594
- Container to catch water
- Table Clamp ME-9472
- 120 cm rod ME-8741
- 2 Three-finger clamps SE-9445
- PS-2104

Setup

- Equipment for mounting sensor:
 - Force Sensor PS-2104
 - Quad Pressure Sensor CI-6460
- Equipment for mounting the force sensor:
 - Multi clamp SE-9492
 - Mounting rod SA-9242
 - Force Sensor Balance Stand and Pan CI-6460
- Container for catching water (with a handle if it is to be hung from the force sensor)

Set up the apparatus with at least 1.5 m of vertical drop from the top surface of the water reservoir to the bottom of the drain tube. Elevate the reservoir above your lab bench and put the catch basin on the floor (see Figure 8).

Cut the water tubing into two pieces of suitable length. Connect one piece to the outflow port of the apparatus and run it over the side of the lab bench into the catch basin. Secure the tubing so water will not spill onto the floor. Place both hose clamps on the outflow tubing. Close one of the clamps partially to regulate the flow rate. Close the other clamp completely; you will open and close this clamp to start and stop water flow.

Run the other piece of tubing from the reservoir to the inflow port of the apparatus. Connect the tubing to the bottom hose fitting of the model ME-8594 Water Reservoir, or (if you are using a container without a hose fitting) set up the tubing as a siphon.

Note: Observe the correct direction of water flow through the apparatus indicated in Figure 2.

Connect the Quad Pressure Sensor if it is not already connected (see page 5).

Important: Do not allow water to enter the sensor’s pressure ports. Connect the quad pressure sensor to the apparatus before filling it with water. Once water is in the apparatus, do not disconnect the sensor; otherwise water will flow through the pressure tubes.

Fill the reservoir with water. (If you are using the tubing as a siphon, fill it and the apparatus with water as well, or use suction to draw water into them.)
Open the clamp to let some water through the apparatus; then close it. Initially, there will be air in the apparatus; tilt it so that the air moves to the outflow port. Let some more water through to flush out the air. Repeat this process until all air has been removed from the apparatus and inflow tubing. Do not let the reservoir run empty, or new bubbles will enter. Close the clamp. Refill the reservoir.

Water-flow Measurement Method 1: Motion Sensor

In this method a motion sensor measures the velocity of the descending water surface in the reservoir.

Parts Required or Recommended

<table>
<thead>
<tr>
<th>Motion Sensor PS-2103</th>
<th>Water Reservoir (or other narrow, straight-sided container) ME-8594</th>
</tr>
</thead>
</table>

Equipment for mounting sensor:

- Multi clamp SE-9492
- Mounting rod SA-9242

1. Set the switch on the motion sensor to the near-range setting.
2. Clamp the motion sensor above the reservoir. Position the sensor very close to the top of the reservoir so it will measure the distance to the surface of the water (see Figure 9). The water surface should be at least 15 cm from the sensor.
3. Test the setup: Start data collection and start the water flow. Look at velocity versus time data on a graph display. Adjust the position and angle of the sensor so that you get good velocity data as the water drains. (It is not necessary to get good data over the entire range of water level, since you will only need about 2 seconds’ worth of data.) Stop water flow and refill the reservoir. Delete your test data.
4. Create a flow-rate calculation: In the DataStudio Calculator window (or GLX Calculator screen) enter the following definition:

 \[R = v \times A \]

5. Define the variable \(v \) as the velocity measurement. Define \(A \) as a constant equal to the horizontal cross-sectional area of the inside of the reservoir. Measure the area in units of \(\text{m}^2 \). In this way, \(R \) is calculated in units of \(\text{m}^3/\text{s} \).

Water-flow Measurement Method 2: Rotary Motion Sensor

In this method a rotary motion sensor measures the velocity of the descending water surface in the reservoir.

Parts Required or Recommended

| Rotary Motion Sensor PS-2120 | Water Reservoir (or other narrow, straight-sided container) ME-8594 | Float (such as a piece of wood) ME-8594 | Small weight (weighing less than the float) |

Equipment for mounting sensor:

- Multi clamp SE-9492
- Mounting rod SA-9242
Define the variable v as the velocity measurement. Define A as a constant equal to the horizontal cross-sectional area of the inside of the reservoir. Measure the area in units of m^2. In this way, R is calculated in units of m^3/s.

Water-flow Measurement Method 3: Force Sensor

In this method, a force sensor measures the increasing weight of the water in the catch basin.

Other Parts Required or Recommended Part Number

- **Water Reservoir (or other container of at least 1 liter)** ME-8594
- Container to catch water
- Equipment to elevate and secure reservoir:
 - Table Clamp ME-9472
 - 120 cm rod ME-8741
 - 2 Three-finger clamps SE-9445 PS-2104

Force Sensor
Equipment for mounting sensor:
- Multi clamp SE-9492
- Mounting rod SA-9242

Setup the Force Sensor
- Clamp the force sensor under the lab bench with the hook pointed down and hang the container from the sensor’s hook (see Figure 11).
- or
- Setup the force sensor on the floor with the Balance Stand and Pan and place the container on the pan.

1. Position and secure the end of the outflow tubing so it will drain water into the container but not interfere with the weight measurement.
2. Create a flow-rate calculation: In the DataStudio Calculator window enter the following definition:

 \[R = \text{derivative}(2,F)/(9.81 \times 1000) \]

 Define the variable F as the **Force (push positive)** measurement. In this way, R is calculated in units of m^3/s. The calculator definition above can be express in standard notation as

 \[R = \text{derivative}(2,F)/(9.81 \times 1000) \]

 ![Image](image_url)

 "In DataStudio, click the Setup button to open the Experiment Setup window. Enable Linear Velocity under the Measurements tab. Set the Linear Scale under the Rotary Motion Sensor tab.

 On the GLX (in standalone mode), go to the Setting Screen by pressing the appropriate button."

 "If you are using a GLX in standalone mode, calculate R manually after data collection using the slope of the force versus time graph."
\[
\text{(eq. 4)} \quad R = \frac{dF}{dt} \cdot \frac{1}{g\rho}
\]

where \(\frac{dF}{dt} \) is the rate of increasing force, \(g = 9.81 \text{ N/kg} \), and \(\rho = 1000 \text{ kg/m}^3 \).

Water-flow Measurement Method 4: Stopwatch

In this method, you measure a volume and elapsed time to determine the average flow. Do this before collecting pressure data.

Other Parts Required or Recommended

Stopwatch SE-8702B Water Reservoir (or other graduated cylinder)

ME-8594

If are using the model ME-8594 Water Reservoir, or similar container, a separate graduated cylinder is not necessary; simply note the initial and final volumes in the reservoir.

1. Start with the catch basin empty.
2. Start the stopwatch and open the clamp to start water flow.
3. After a measurable amount of water has flowed through, stop the stopwatch and close the clamp.
4. Measure the volume of water that flowed out of (or into) the apparatus.
5. Calculate the average flow rate:

\[
\text{(eq. 5)} \quad R = \frac{\Delta V}{\Delta t}
\]

where \(\Delta V \) is the volume of water and \(\Delta t \) is the elapsed time.

Typically the flow rate varies with the level of water in the reservoir. To keep the flow rate close to constant, make the pressure measurements with the water level approximately the same as it was for the flow rate measurement.

Appendix C: Constants

Density of dry air at 20 °C and 1 atm: 1.2 kg/m³

Density of water: 1000 kg/m³

Wide cross-sectional area of channel: 1.99 cm²

Narrow cross-sectional area of channel: 0.452 cm²