Monday, August 21, 2017

UTSA professor wins $450,000 NSF grant to develop artificial intelligence that can detect computer system faults

UTSA professor wins $450,000 NSF grant to develop artificial intelligence that can detect computer system faults

Abdullah Muzahid’s NFrame network would learn, monitor and detect “bad behavior” in computer programs

(June 8, 2017) -- Abdullah Muzahid, an assistant professor of computer science at UTSA, has received a $450,000 National Science Foundation (NSF) Faculty Early Career Development award to develop a hardware-based artificial intelligence system that can detect costly software bugs and security attacks in computer systems.

Each year, businesses spend millions on cybersecurity and bug fixes. A 2016 report by the International Data Corporation estimated that more than $73.7 billion is spent worldwide in security-related hardware, software and service expenses. Muzahid and his collaborators hope to significantly decrease those expenditures with their new system.

Over the next five years, the UTSA researcher and his team of undergraduate and graduate students will develop an artificial neural network (ANN) dubbed “NFrame” that can detect, avoid and expose the root causes of system faults, bugs and security attacks. ANNs are computer systems modeled after the human brain and nervous system that are designed to recognize system behaviors and make decisions based on those recognitions

“Our goal with NFrame is to create a self-policing computer system that is accurate, adaptive and fast,” said Muzahid, whose top-tier research focuses on improving the programmability of computer architecture by providing various support in the hardware. “Not only is our approach the first to use neural network hardware in this way, but its processes will give new insights into the causes and manifestations of bugs, security flaws and computer system faults.”

NFrame would work by monitoring correlated code, data and program instructions to learn the “acceptable” or normal behaviors of the various software programs running on its system. Behaviors that deviate from those defined parameters would be identified as bugs or attacks. For example, Muzahid says that NFrame could tell its users why a specific software keeps crashing, or it could pinpoint a security flaw in a program and report the exact way in which it’s compromised. It would also be able to flag and prevent a program from sending information to an unauthorized third-party that may be attempting to break into the system.

“NFrame can not only tell you why something has gone wrong, but because of how it learns it can also predict when something is about to go wrong in its system,” said Muzahid. “The network can also tell you what is wrong, how it is wrong, where it is wrong, why it is wrong, and whether something will be wrong in the future. This is possible because of how we are building NFrame.” 

The majority of ANNs are built in software. NFrame will be built into the hardware running alongside its computer systems—allowing it to adapt and evolve with its host-system at incredible speeds. According to Muzahid, hardware-based ANNs are able to process information and make decisions at more than 100 times the speed of software-based networks. 

In addition to refining NFrame and its hardware for practical use, Muzahid and his students plan to educate the community about computer architecture and programming. The NSF funding supports the creation of coursework for UTSA and local high school students about the future of computing and machine learning. 

“In an ideal world, we will one day be able to have adaptive artificial neural networks like NFrame on every computer system to help it protect itself from software bugs and other risks that can make it vulnerable to attack or intrusion,” Muzahid said. "In the meantime, we want also to educate future programmers about the best approaches to cybersecurity."

Muzahid is the seventh faculty member in the UTSA Department of Computer Science, housed in the College of Sciences, to receive the distinguished NSF Career Award, which is awarded to the most promising junior faculty members in the nation in order to assist them in developing their careers as teachers and scholars.

“Dr. Muzahid’s novel approach to detecting and reacting to bugs and security attacks in computer systems using an artificial neural network is closely aligned with UTSA’s academic and research focus to helping solve the pressing issues that are significant to the industry today,” said Rajendra Boppana, professor and department chair. “It will be exciting to see how NFrame develops in the coming years.”

UTSA is ranked among the top 400 universities in the world and among the top 100 in the nation, according to Times Higher Education.

- Jesus Chavez

Learn more about the UTSA College of Sciences and the Department of Computer Science.

Learn more about Cybersecurity at UTSA.

Connect with UTSA online at Facebook, Twitter, Vimeo and Instagram.