OCTOBER 22, 2020 — A team of researchers from UTSA’s Neurosciences Institute is challenging the historical belief that the organization of the cortical circuit of GABAergic neurons is exclusively local.
College of Sciences researchers Alice Bertero, Hector Zurita and Marc Normandin and biology associate professor Alfonso Junior Apicella collaborated on the research project.
In the past, labeling individual neurons allowed researchers to study the neurons that project from the brain’s cortex to the striatum. The results suggested that the pathways are exclusively excitatory. For this reason most people assumed that inhibition must occur when excitatory cortical neurons activate intrastriatal inhibitory.
The UTSA team contested this view by providing anatomical and physiological evidence for the existence of long-range parvalbumin-expression neurons from the cortex to the striatum in the brains of mice.
This finding is an essential step toward better understanding the neuronal mechanism of cortical long-range GABAerginc neurons in healthy and diseased brains. In particular this could lead to new treatments for patients with epilepsy, post-traumatic stress disorder, schizophrenia and other mental conditions in which GABAergic neurons play a significant role.
“Daily we are bombarded by multiple auditory stimuli, including various speeches,” said Apicella. “Particularly, listeners must determine which speech acoustic features are relevant and generalize across irrelevant ones during speech perception. We think that the interaction between the cortex and the striatum is fundamental to optimize nonnative speech learning in adulthood. Therefore, it is crucial to determine which of the cortical-striatum pathway’s cellular elements are involved in this process.”
The discovery that the striatum receives both excitatory and inhibitory inputs from the cortex suggests that these inputs’ timing and relative strength can modulate the striatum’s activity. This is important because it invites the scientific community to speculate that the long-range parvalbumin-expressing projects could play a role through gamma oscillation synchronization between the auditory cortex and striatum.
The team proposes that future experiments will provide further insight into the role of the timing and ratio of excitation and inhibition, two opposing forces in the mammalian cerebral cortex, affecting the cortico-striatal dynamic.
“Future studies,” said Apicella, “will provide a general mechanism of cortico-striatal oscillation involved in reward learning and action-selection behavior driven by the auditory stimuli.”
UTSA Today is produced by University Communications and Marketing, the official news source of The University of Texas at San Antonio. Send your feedback to news@utsa.edu. Keep up-to-date on UTSA news by visiting UTSA Today. Connect with UTSA online at Facebook, Twitter, Youtube and Instagram.
Move In To COLFA is strongly recommended for new students in COLFA. It gives you the chance to learn about the Student Success Center, campus resources and meet new friends!
Academic Classroom: Lecture Hall (MH 2.01.10,) McKinney Humanities BldgWe invite you to join us for Birds Up! Downtown, an exciting welcome back event designed to connect students with the different departments at the Downtown Campus. Students will have the opportunity to learn about some of the departments on campus, gain access to different resources, and collect some giveaways!
Bill Miller PlazaCome and celebrate this year's homecoming at the Downtown Campus with food, games, giveaways, music, and more. We look forward to seeing your Roadrunner Spirit!
Bill Miller PlazaThe University of Texas at San Antonio is dedicated to the advancement of knowledge through research and discovery, teaching and learning, community engagement and public service. As an institution of access and excellence, UTSA embraces multicultural traditions and serves as a center for intellectual and creative resources as well as a catalyst for socioeconomic development and the commercialization of intellectual property - for Texas, the nation and the world.
To be a premier public research university, providing access to educational excellence and preparing citizen leaders for the global environment.
We encourage an environment of dialogue and discovery, where integrity, excellence, respect, collaboration and innovation are fostered.