APRIL 18, 2023 — Generative AI is giving researchers a clearer picture when it comes to targeting cancer treatments.
In a collaborative effort, researchers from UTSA, UT Health San Antonio and the University of Pittsburgh are studying the use of AI for adaptive radiotherapy, with the hope it can improve and replace the current practice that clinicians use to review images and treat a tumor.
“This is a multidisciplinary research project that includes multiple faculty members who have come together with a different skillset – AI, data analytics, and health care – to solve a challenge,” said Paul Rad, UTSA associate professor with joint appointment in the Department of Computer Science and the Alvarez College of Business. “Our study aimed to analyze treatment doses administered and develop a precise map of a patient's cancer progression while accounting for potential variability using uncertainty estimation."
Patients undergoing radiotherapy are currently given a computed tomography (CT) scan to help physicians see where the tumor is on an organ, for example a lung. A treatment plan to remove the cancer with targeted radiation doses is then made based on that CT image.
Rad says that cone-beam computed tomography (CBCT) is often integrated into the process after each dosage to see how much a tumor has shrunk, but CBCTs are low-quality images that are time-consuming to read and prone to misinterpretation.
UTSA researchers used domain adaptation techniques to integrate information from CBCT and initial CT scans for tumor evaluation accuracy. Their Generative AI approach visualizes the tumor region affected by radiotherapy, improving reliability in clinical settings.
This improved approach enables physicians to more accurately see how much a tumor has decreased week by week and to plan the following weeks’ radiation dose with greater precision. Ultimately, the approach could lead clinicians to better target tumors while sparing the surrounding critical organs and healthy tissue.
Nikos Papanikolaou, a professor in the Departments of Radiation Oncology and Radiology at UT Health San Antonio, provided the patient data that enabled the researchers to advance their study.
“UTSA and UT Health San Antonio have a shared commitment to deliver the best possible health care to members of our community,” Papanikolaou said. “This study is a wonderful example of how artificial intelligence can be used to develop new personalized treatments for the benefit of society.”
The American Society for Radiology Oncology stated in a 2020 report that between half or two-thirds of people diagnosed with cancer were expected to receive radiotherapy treatment. According to the American Cancer Society, the number of new cancer cases in the U.S. in 2023 is projected to be nearly two million.
Arkajyoti Roy, UTSA assistant professor of management science and statistics, says he and his collaborators have been interested in using AI and deep learning models to improve treatments over the last few years.
“Besides just building more advanced AI models for radiotherapy, we also are super interested in the limitations of these models,” he said. “All models make errors and for something like cancer treatment it’s very important not only to understand the errors but to try to figure out how we can limit their impact; that’s really the goal from my perspective of this project.”
The researchers’ study included 16 lung cancer patients whose pre-treatment CT and mid-treatment weekly CBCT images were captured over a six-week period. Results show that using the researchers’ new approach demonstrated improved tumor shrinkage predictions for weekly treatment plans with significant improvement in lung dose sparing. Their approach also demonstrated a reduction in radiation-induced pneumonitis or lung damage up to 35%.
“We’re excited about this direction of research that will focus on making sure that cancer radiation treatments are robust to AI model errors,” Roy said. “This work would not be possible without the interdisciplinary team of researchers from different departments.”
The joint research, titled “CBCT-guided Adaptive Radiotherapy using Self-Supervised Sequential Domain Adaptation with Uncertainty Estimation” will be published in the Medical Image Analysis journal, a peer-reviewed academic journal which focuses on medical and biological image analysis.
Collaborators included Nima Ebadi with the UTSA Department of Electrical and Computer Engineering; Ruiqi Li, a Ph.D. student in the UT Health San Antonio Radiological Science Program; and Arun Das with the University of Pittsburgh Department of Medicine. Both Rad and Roy are core faculty members at the new UTSA School of Data Science in Downtown San Antonio.
UTSA Today is produced by University Communications and Marketing, the official news source of The University of Texas at San Antonio. Send your feedback to news@utsa.edu. Keep up-to-date on UTSA news by visiting UTSA Today. Connect with UTSA online at Facebook, Twitter, Youtube and Instagram.
Join us for Coffee with Vets, a casual social event where veterans can come together, connect, and share camaraderie over a cup of coffee. This is a perfect opportunity to unwind, meet fellow veterans, and build community in a welcoming and relaxed environment.
Veteran Lounge (JPL 4.03.04,) John Peace Library, Main CampusStop by to ask questions or learn about how you can become involved in Wellbeing Services events and programs.
Window Lounge (SU1.02.00C,) Student Union, Main CampusArt of Wellbeing is a weekly workshop provided by Wellbeing Services! Join us as we use different art mediums each week as a way to improve our overall wellbeing!
Magnolia Room (SU2.01.30,) Student Union, Main CampusNeed a Job/Internship? Connect with employers from different industries looking to fill their opportunities. This event is the perfect chance to start building your career path!
H-E-B BallroomsIn this Intro to Python workshop, attendees will be introduced to digital humanities projects that use Python. Participants will explore how Python can support digital projects by its versatility.
Group Spot B, John Peace LibraryDon’t mind the writing but hate formatting citations and bibliographies? Working on your thesis or dissertation, or even a long paper this semester? Citation managers such as Zotero® can help you store and organize the citations you find during your research.
Virtual Event (Zoom)Join UTSA Libraries and Museums to learn more about the publishing discounts available for UTSA researchers. Current agreements include Elsevier, Cambridge University Press, Wiley, and more. Bring your questions and feedback for the library as we continue to pursue partnerships with publishers to reduce costs for our researchers.
Virtual Event (Zoom)The University of Texas at San Antonio is dedicated to the advancement of knowledge through research and discovery, teaching and learning, community engagement and public service. As an institution of access and excellence, UTSA embraces multicultural traditions and serves as a center for intellectual and creative resources as well as a catalyst for socioeconomic development and the commercialization of intellectual property - for Texas, the nation and the world.
To be a premier public research university, providing access to educational excellence and preparing citizen leaders for the global environment.
We encourage an environment of dialogue and discovery, where integrity, excellence, inclusiveness, respect, collaboration and innovation are fostered.
UTSA is a proud Hispanic Serving Institution (HSI) as designated by the U.S. Department of Education .
The University of Texas at San Antonio, a Hispanic Serving Institution situated in a global city that has been a crossroads of peoples and cultures for centuries, values diversity and inclusion in all aspects of university life. As an institution expressly founded to advance the education of Mexican Americans and other underserved communities, our university is committed to promoting access for all. UTSA, a premier public research university, fosters academic excellence through a community of dialogue, discovery and innovation that embraces the uniqueness of each voice.