Spatial data models (types)

Not taught yet
A new data model in ArcGIS

- **Geodatabase data model**
  - Use a relational database that stores geographic data
    - A type of database in which the data is organized across several tables. Tables are associated with each other through common fields. Data items can be recombined from different files.
  - A container for storing spatial and attribute data and the relationships that exist among them
  - And their associated attributes can be structured to work together as an integrated system using rules, relationships, and topological associations
Geodatabase components - vector data and table

- Primary (basic) components
  - feature classes,
  - feature datasets,
  - nonspatial tables.
- Complex components building on the basic components:
  - topology,
  - relationship classes,
  - geometric networks
A feature class is a geographic feature that includes points, lines, polygons, and annotation feature class.

Feature classes may exist independently in a geodatabase as stand-alone feature classes or you can group them into feature datasets.

The SouthAmerica geodatabase contains four stand-alone feature classes: a point feature class of cities, a dimension feature class of distances between cities, a polygon feature class of countries, and an annotation feature class of country names.

Source: www.esri.com
Feature datasets

- A feature dataset is composed of feature classes that have been grouped together so they can participate in topological relationships with each other. All the feature classes in a feature dataset must share the same spatial reference (or coordinate system).
- Edits you make to one feature class may result in edits being made automatically to some or all of the other feature classes in the feature dataset.

In the CityWater geodatabase, three point feature classes and one line feature class were grouped into the PublicWater feature dataset to create a geometric network called WaterNet.

Source: www.esri.com
Tables

- Feature class tables and nonspatial attribute tables.
- Both types of tables are created and managed in ArcCatalog and edited in ArcMap. Both display in the traditional row-and-column format. The difference is that feature class tables have one or more columns that store feature geometry.
- Nonspatial tables contain only attribute data (no feature geometry) and display in ArcCatalog with the table icon. They can exist in a geodatabase as stand-alone tables, or they can be related to other tables or feature classes.

The cfcc_desc table in the SantaBarbara geodatabase contains attribute data for the Roads feature class (stored inside the Roads feature dataset).

Source: www.esri.com
In a GIS, spatial relationships among feature classes in a feature dataset are defined by topology. You can choose whether or not to create topology for features.

The primary spatial relationships that you can model using topology are adjacency, coincidence, and connectivity.

There are three types of topology available in the geodatabase: geodatabase topology (over 20 topology rules), map topology, and geometric network topology. Each type of topology is created from feature classes that are stored within a feature dataset. A feature class can participate in only one topology at a time.

- Geodatabase topology defines the spatial relationships of your data. All feature classes must be in the same feature dataset.
- Map topology creates temporary topological relationships among features in one or more feature classes during an edit session.
- Geometric network topology established between point and line feature classes stored in the same feature dataset.
Geometric Networks

- In the real world, examples of networks abound: streams joining together to form larger streams, pipes carrying water to homes and businesses throughout a city, and power lines carrying electricity.
- In a geodatabase, you can model each of these real-world networks with a geometric network. Starting with simple point and line feature classes, you use ArcCatalog to create a geometric network that will enable you to answer questions such as: Which streams will be affected by a proposed dam? Which areas will be affected by a water main repair? What is the quickest route between two points in the network?

Source: www.esri.com
Feature classes that participate in the network are automatically converted from simple feature classes to network feature classes, and one or more attribute fields containing network information are added to the feature class table.

There are more restrictions involved with managing network feature classes than with managing simple feature classes. You cannot rename, delete, or copy a network feature class. To perform any of these actions, you must convert the network feature class back to a simple feature class by deleting the geometric network.

When you build a geometric network, there are a number of options you can choose from to make your network model more realistic. For example, you can:
- set the direction that resources will flow through the network
- assign weights that control the speed of flow through different parts of the network
- specify rules that control how each element in the network connects to the others
Geometric Networks example

Feature Classes

Valve
Service
Feed
Lateral
Main

Source: ESRI European User Conference
In a geodatabase, relationship classes provide a way to model real-world relationships that exist between objects such as parcels and buildings or streams and water sample data. By using relationship classes, you can make your GIS database more accurately reflect the real world and facilitate data maintenance.

The relationships stored in a relationship class can be between two feature classes (such as buildings and parcels, top) or between a feature class and a nonspatial attribute table (such as streams and water quality sampling data, bottom).

Source: www.esri.com
Three types of relationship

1. **1-1 (one to one) relationship**: Each object of the origin table/feature class can be related to zero or one object of the destination table/feature class.

   - **Parcels Table/Feature Class**
   - **Owners Table/Feature Class**

2. **1-M (one to many) relationship**: Each object in the origin table/feature class can be related to multiple objects in the destination table/feature class.

   - **Parcels Table/Feature Class**
   - **Owners Table/Feature Class**

3. **M-N (many to many) relationship**: Multiple objects of the origin table/feature class can be related to multiple objects of the destination table/feature class.

   - **Parcels Table/Feature Class**
   - **Owners Table/Feature Class**
Geodatabase components - Raster data

- Raster data referenced only in personal geodatabase
- Raster data physically stored in multiuser geodatabase
- Raster datasets and raster catalogs
  - A raster dataset is created from one or more individual rasters. When creating a raster dataset from multiple rasters, the data is mosaicked, or aggregated, into a single, seamless dataset in which areas of overlap have been removed. The input rasters must be contiguous (adjacent) and have the same properties, including the same coordinate system, cell size, and data format. For each raster dataset (.img, grid, JPEG, MrSID, TIFF), ArcGIS creates an ERDAS IMAGINE file (.img).
  
  - A raster catalog is defined as a table in the geodatabase which you can view like any other table in ArcCatalog. Each raster in the catalog is represented by a row in the table. It contains a collection of rasters that can be noncontiguous, stored in different formats, and have other different properties. In order to view all the rasters in the catalog, they must have the same coordinate system and a common geographic extent.
<table>
<thead>
<tr>
<th>Raster Dataset</th>
<th>Raster Catalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single dataset built from one or more rasters</td>
<td>Collection of rasters</td>
</tr>
<tr>
<td>Homogeneous source data: same resolution, format, coordinate system</td>
<td>Heterogeneous source data: different resolutions, formats, data types, file sizes</td>
</tr>
<tr>
<td>Faster display</td>
<td>Slower display. The more rasters, the slower the display</td>
</tr>
<tr>
<td>Loss of overlapping pixels when mosaicked</td>
<td>Overlapping pixels are preserved</td>
</tr>
<tr>
<td>One metadata file</td>
<td>Metadata files for the catalog and for each raster</td>
</tr>
</tbody>
</table>
Types of geodatabases

- personal
- enterprise
Personal Geodatabase

- The personal geodatabase is given a name of *filename.mdb* that is browsable and editable by the ArcGIS, and it can also be opened with Microsoft Access. It can be read by multiple people at the same time, but edited by only one person at a time. Maximum size is 2 GB. No support of raster.
Multiuser Geodatabase

- Multiuser (ArcSDE or enterprise) geodatabase are stored in IBM DB2, Informix, Oracle, or Microsoft SQL Server.

- It can be edited through ArcSDE by many users at the same time, is suitable for large workgroups and enterprise GIS implementations. no limit of size. support raster data.
3-tier ArcSDE client/server architecture with both the ArcSDE and Oracle RDBMS running on the same server, which minimizes network traffic and client load while increasing the server load compared to 2-tier system, in which the clients directly connect to the RDBMS.
If a project becomes too large for a personal geodatabase, you can easily move the data stored in a personal geodatabase to a multiuser geodatabase using ArcCatalog.

Table 1. Comparison of multiuser and personal geodatabases

<table>
<thead>
<tr>
<th></th>
<th>DBMS</th>
<th>Client / Server</th>
<th>Long Transactions*</th>
<th>Disconnected Editing</th>
<th>Editors</th>
<th>Raster Data</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiuser</td>
<td>IBM DB2, Informix, Microsoft SQL Server, Oracle</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1 or more at the same time</td>
<td>Stored</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Personal</td>
<td>Microsoft Access</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>1 at a time</td>
<td>Referenced</td>
<td>Up to 2 GB</td>
</tr>
</tbody>
</table>

*Database transactions spanning multiple edit sessions
## Differences in Geodatabase among ArcGIS family

<table>
<thead>
<tr>
<th></th>
<th>ArcView/Map</th>
<th>ArcEditor</th>
<th>ArcInfo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read, Display, Query, &amp; Use</td>
<td>Any geodatabase</td>
<td>Any geodatabase</td>
<td>Any geodatabase</td>
</tr>
<tr>
<td>Editing</td>
<td>Edit simple personal geodatabases(^1)</td>
<td>Edit all geodatabases</td>
<td>Edit all geodatabases</td>
</tr>
<tr>
<td></td>
<td>Can edit simple feature classes, annotation, tables, and simple feature datasets</td>
<td>Multiuser geodatabase editing requires ArcSDE™</td>
<td>Multiuser geodatabase editing requires ArcSDE</td>
</tr>
<tr>
<td>Schema management and database design</td>
<td>Create simple schemas for personal geodatabases(^1)</td>
<td>Create all schemas for any geodatabase</td>
<td>Create all schemas for any geodatabase</td>
</tr>
<tr>
<td></td>
<td>Supports: points, lines, polygons, annotation, and tables</td>
<td>Multiuser geodatabase support requires ArcSDE</td>
<td>Multiuser geodatabase support requires ArcSDE</td>
</tr>
<tr>
<td></td>
<td>No topology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No geometric networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No relationship classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No feature-linked annotation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No dimension classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No raster support</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No custom feature classes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Simple personal geodatabases model spatial features that are very much like ESR® shapefiles: points, lines, and polygons without topology. Personal geodatabases also allow you to store multiple feature classes together in a single feature dataset, as well as provide annotation support.

[http://ag.arizona.edu/art/kb/geodb/geo_info.html](http://ag.arizona.edu/art/kb/geodb/geo_info.html)
Problems caused by the simplified features may still exist, but let’s live on it

- Dynamic nature (not static)
  - Forest grow
  - River channel change
  - City expand or decline
- Identification of discrete and continuous features
  - Road to be a line or an area?
- Scale
- Some may not fit to any type of features: fuzzy boundaries
  - Transition area between woodland and grassland

Let's do not worry about these problems now!!! Just keep in mind