HomeAbout the Department Site mapContact

Donald Kurtz Jr.
Lutcher Brown Distinguished Professor

Office: BSE 4.324

Office Phone: (210) 458-7060
Email: donald.kurtz@utsa.edu


Areas of Specialization
• Bioinorganic chemistry
• Non-heme iron enzymes








Research Interests


• A major aspect of our research focuses on the structure, function, and catalytic mechanisms of bacterial and archaeal non-heme iron enzymes that reductively scavenge diatomic oxygen and nitrogen species. These scavenging and sensing reactions require specialized active sites with novel iron coordination environments and novel mechanisms, which we follow by rapid kinetic and spectroscopic techniques as well as protein X-ray crystallography.† We are also attempting to develop an oxygen-carrying protein as a blood substitute.


• A related project focuses on proteins that catalyze storage and release of intracellular iron.† An exciting new development is the use of these iron storage proteins as scaffolds to enclose metal and semiconductor nanoparticles for photochemical H2 production and photo-initiated delivery of toxic iron to cancer cells.



Selected Publications


Caranto, J.D., Weitz, A., Giri, N., Hendrich, M.P., Kurtz, D.M., Jr. A Diferrous-Dinitrosyl Intermediate in the N2O-Generating Pathway of a Deflavinated Flavo-Diiron Protein. Biochemistry 2014, 53, 5631-5637. DOI: 10.1021/bi500836z

Caranto, J.D., Weitz, A., Hendrich, M.P., Kurtz, D.M., Jr. The Nitric Oxide Reductase Mechanism of a Flavo-Diiron Protein: Identification of Active Site Intermediates and Products. J. Am. Chem. Soc. 2014, 136, 7981-7992. DOI: 10.1021/ja5022443

Hathazi, D.G., Mot, A. C., Vaida, A., Scurtu, F., Lupan, I., Fisher-Fodor, E., Damian, G., Kurtz, D.M., Jr., Silaghi-Dumitrescu, R. Oxidative Protection of Hemoglobin and Hemerythrin by Cross-Linking with a Non-Heme Iron Peroxidase: Potentially Improved Oxygen Carriers for Use in Blood Substitutes. Biomacromolecules 2014, 15, 1920-1927. DOI: 10.1021/bm5004256

Okamoto, Y., Onoda, A., Sugimoto, H., Takano, Y., Hirota, S., Kurtz, D.M., Jr., Shiro, Y., Hayashi, T. H2O2-dependent Substrate Oxidation by an Engineered Diiron Site in a Bacterial Hemerythrin. Chem. Comm. 2014, 50, 3379-3520. DOI: 10.1039/c3cc48108e

Onoda, A.; Okamoto, Y.; Sugimoto, H.; Takano, Y.; Shun, H.; Kurtz, D.M., Jr.; Shiro, Y.; Hayashi, T. Crystal Structure, Exogenous Ligand Binding and Redox Properties of an Engineered Diiron Active Site in a Bacterial Hemerythrin. Inorg. Chem. 2013, 52, 13014-13020. DOI: 10.1021/ic401632x

Miner, K.D., Klose, K.E., Kurtz, D.M., Jr. An HD-GYP Cyclic-Di-Guanosine Monophosphate Phosphodiesterase with a Non-Heme Diiron-Carboxylate Active Site. Biochemistry 2013, 52, 5329-5331. DOI: 10.1021/bi4009215

Fang, H., Caranto, J. D., Mendoza, R., Taylor, A.B., Hart, P.J., Kurtz, D.M., Jr. Histidine Ligand Variants of a Flavo-Diiron Protein: Effects on Structure and Activities. J. Biol. Inorg. Chem. 2012, 17, 1231-1239. DOI: 10.1007/s00775-012-0938-4

Schaller, R.A., Ali, S.K., Klose, K.E., Kurtz, D.M., Jr. A Bacterial Hemerythrin Domain Regulates Activity of a Vibrio cholerae Di-Guanylate Cyclase. Biochemistry 2012, 51, 8563Ė8570. DOI: 10.1021/bi3011797

Caranto, J.D., Gebhardt, L.L., MacGowan, C.E., Limberger, R.J., Kurtz, D.M., Jr. Treponema denticola Superoxide Reductase: In Vivo Role, In Vitro Reactivities and a Novel [Fe(Cys)4] Site. Biochemistry 2012, 51, 5601-5610. DOI: 10.1021/bi300667s

Hayashi, T., Caranto, J.D., Matsumura, H., Kurtz, D.M., Jr., MoŽnne-Loccoz, P. Vibrational Analysis of Mononitrosyl Complexes in Hemerythrin and Flavodiiron Proteins: Relevance to Detoxifying NO Reductase J. Am. Chem. Soc. 2012, 134, 6878-6884. DOI: 10.1021/ja301812p

Hayashi, T., Caranto, J.D., Wampler, D.A., Kurtz, D.M., Jr., MoŽnne-Loccoz, P. Insights into the Nitric Oxide Reductase Mechanism of Flavo-Diiron Proteins from a Flavin-Free Enzyme. Biochemistry 2010, 49, 7040-7049. DOI: 10.1021/bi100788y

Morleo, A., Bonomi, F., Iametti, S., Huang, V. W., Kurtz, D. M., Jr. Iron-nucleated Folding of a Metalloprotein in High Urea: Resolution of Metal Binding and Protein Folding Events. Biochemistry 2010, 49, 6627-6634. DOI: 10.1021/bi100630t




One UTSA Circle * San Antonio, TX 78249
DOC Office (210) 458-5469 Fax (210) 458-7428