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Abstract

Remote sensing provides a means of observing hydrological state variables over large areas. The ones which we will consider in

this paper are land surface temperature from thermal infrared data, surface soil moisture from passive microwave data, snow cover

using both visible and microwave data, water quality using visible and near-infrared data and estimating landscape surface

roughness using lidar. Methods for estimating the hydrometeorlogical fluxes, evapotranspiration and snowmelt runoff, using these

state variables are also described.

Published by Elsevier Science Ltd.

1. Introduction

Remote sensing is the process of inferring surface

parameters from measurements of the upwelling elec-

tromagnetic radiation from the land surface. This radi-

ation is both reflected and emitted by the land. The

former is usually the reflected solar while the latter is in

both the thermal infrared (TIR) and microwave por-

tions of the spectrum. There is also reflected microwave
radiation as in imaging radars. The reflected solar is

used in hydrology for snow mapping vegetation/land

cover and water quality studies. The thermal emission in

the infrared is used for surface temperature and in the

microwave for soil moisture and snow studies. We will

not discuss the use of radars for precipitation studies as

that is the topic of another paper in this issue [50]. We

will concentrate on the visible and near-infrared (VNIR)
for snow mapping and water quality; the TIR for sur-

face temperature and energy balance studies; passive

microwave for soil moisture and snow. Active micro-

wave or radar has promise because of the possibility of

high spatial resolution. However, surface roughness ef-

fects can make it difficult to extract soil moisture in-

formation. Remotely sensed observations can contribute

to our knowledge of these quantities and, especially,
their spatial variation. With remote sensing we only

observe the surface but can obtain the spatial variability

and if observations are made repeatedly the temporal
variability. In this paper we will concentrate on those

applications of remote sensing which we believe are the

most promising in hydrology.

A major focus of remote sensing research in hydrol-

ogy has been to develop approaches for estimating hy-

drometeorological states and fluxes. The primary set of

state variables include land surface temperature, near-

surface soil moisture, snow cover/water equivalent,
water quality, landscape roughness, land use and vege-

tation cover. The hydrometeorological fluxes are pri-

marily soil evaporation and plant transpiration or

evapotranspiration, and snowmelt runoff.

We will describe methods which have been used to

quantify the components of the water and energy bal-

ance equation using remote sensing methods. The water

balance is commonly expressed as follows:

DS
Dt

¼ P � ET � Q ð1Þ

where DS=Dt is the change in storage in the soil and/or

snow layer, P is the precipitation, ET is the evapotran-

spiration and Q is the runoff. Because the energy and
water balance at the land surface are closely linked we

also need to consider the energy balance equation which

is typically written as:

RN � G ¼ H þ LE ð2Þ

where RN is the net radiation, G is the soil heat flux, H is

the sensible heat flux and LE is the latent heat flux all in
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Wm�2. The quantity RN � G is commonly referred to as

the available energy, and ET and LE represent the same

water vapor exchange rate across the surface–atmo-

sphere interface, except ET is usually expressed in terms

of depth of water over daily and longer time scales,
namely mm/day.

2. Remote sensing of hydrometeorological states

2.1. Land surface temperature

Land surface temperature is the result of the equi-

librium thermodynamic state dictated by the energy

balance between the atmosphere, surface and subsurface

soil and the efficiency by which the surface transmits

radiant energy into the atmosphere (surface emissivity).

The latter depends on the composition, surface rough-
ness, and physical parameters of the surface, e.g.,

moisture content. In addition, the emissivity generally

will vary with wavelength for natural surfaces. Thus to

make a quantitative estimate of the surface temperature

we need to separate the effects of temperature and

emissivity in the observed radiance. Airborne and sat-

ellite-based radiometers measure what is commonly

called a �brightness temperature� derived from the radi-
ance reaching the sensor. This brightness temperature

must be corrected for atmospheric attenuation of the

surface radiance considering the impact of surface

emissivity, before it can regarded as an estimate of the

land surface temperature.

The relationship between land surface and brightness

temperature from an aircraft or satellite-based sensor is

usually expressed in terms of the radiation balance [86],

Lj
SEN ¼ Lj

SURFs
j þ Lj

ATM" ð3Þ

where L is the radiance from the jth waveband channel

of the radiometer, Lj
SEN is at sensor radiance, Lj

SURF is the

surface radiance, Lj
ATM" is the upwelling atmospheric

radiance and sj is the atmospheric transmission. Values

of Lj
ATM" and sj can be calculated using atmospheric

radiative transfer codes, such as MODTRAN [9]. This

permits the determination of the upwelling radiance at

the surface, which yields the land surface temperature,

to be computed from the following expression:

Lj
SURF ¼ ejLBBðkj; TSÞ þ ð1� ejÞLj

ATM# ð4Þ

where ej is the surface emissivity, LBBðkj; TSÞ is the

Planck equation for the radiation from a black body and
kj is the central wavelength for the jth channel of the

radiometer. The value of Lj
ATM" can also be determined

using atmospheric radiative transfer codes. The re-

maining problem is to relate these radiances to the

surface emissivity without direct knowledge of the land

surface temperature, TSURF.

Due to the lack of adequate atmospheric profile ob-

servations, the development of alternative approaches

such as so-called �split window� methods would be more

operationally applicable (e.g., [87]). These split window

methods employ two channels at slightly different
wavelengths, k1 and k2 in Eqs. (4) and (5) to essentially

eliminate (using a few approximations) the need for es-

timating the atmospheric transmission and radiances.

This approach has been used quite successfully over

oceans where the spectral variation of the emissivity is

small. Over land this is not the case and the split window

methods are sensitive to uncertainty in the emissivities in

the two channels; for example, at a brightness temper-
ature 300 K, a difference e1 � e2 � 0:01 can yield an er-

ror in land surface temperature of �2 K [87]. There has

been much recent work on the use of these split window

techniques using the two thermal channels of the ad-

vanced very high resolution radiometer (AVHRR) in-

strument on the NOAA series of meteorological

satellites [8,20,48,85,128]. This approach is being used

with the multi-spectral TIR data from the moderate
resolution imaging spectroradiometer (MODIS) on

board the NASA Terra satellite. They use a database of

land surface emissivities based on land cover to correct

for emissivity effects [129].

Until recently, methods for estimating surface emis-

sivity from remote sensing were empirical. With the

launch of NASA�s Earth Observing System Platform,

Terra, in December 1999, multi-spectral TIR data from
the advanced spaceborne thermal emission reflectance

radiometer (ASTER; [138]), a technique has been pro-

posed to extract both land surface temperature and

emissivity. This approach makes use of a rather robust

empirical relation between the range of emissivities and

the minimum value from a set of multi-channel obser-

vations. It is termed temperature emissivity separation

or TES [27]. This algorithm has been evaluated using a
prototype of ASTER, the airborne thermal infrared

multi-spectral scanner (TIMS), over heterogeneous

landscapes in West Africa and in the US southwest

[115,117]. In addition, using TIMS data collected in the

US Southern Great Plains, the spectral variation of

emissivity was used to discriminate between bare soil

fields and fields containing senescent vegetation (wheat

stubble). Such a separation is not possible with visible
and near-infrared data alone and is an important dis-

tinction when assessing surface energy balance using

remotely sensed temperatures [24].

Land surface temperatures. derived using ASTER

satellite imagery covering an area around the USDA-

ARS Grazinglands Research Facility in El Reno,

Oklahoma is displayed in Fig. 1. The spatial distribution

of land surface temperature, TSURF, reflects some sig-
nificant differences in land cover conditions this time of

year (September) with large areas of bare soil and wheat

stubble from harvested winter wheat fields and grass-
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lands used for cattle grazing, with a small areas of irri-

gated crop lands and water bodies. This type of spatially

distributed information is very useful for evaluating

spatial patterns of ET over large areas as will be dem-

onstrated later in this paper.

2.2. Near-surface soil moisture

At microwave frequencies the most striking feature of

the emission from the earth�s surface is large contrast

between water and land. This emissivity contrast is due

to the large dielectric constant of water (80) while that of

most dry minerals or soils is <5, which causes an

emissivity contrast of 0.4 for water to about 0.95 for dry

land. When you have a mixture of water and dry soil the

resulting dielectric constant is between these two ex-
tremes thus affording a mechanism for the remote

sensing of the moisture content of soils by observing its

emissivity at microwave frequencies. Since the early 70s

there has been extensive research studying microwave

approaches for the remote sensing of soil moisture

[42,114,135]. The basic conclusion of this research is that

it is indeed possible to determine the moisture content of

the surface layer of the soil about a 1=4 of a wavelength
thick, i.e., about a 0–5 cm layer using a 21 cm wave-

length. In general it has been found that the longer

wavelengths are better for increased sampling depth and

reduced effects of noise factors such as vegetation and

surface roughness. The range of emissivity variation to

be expected is from 0.95 for dry soils to less that 0.6 for

smooth wet soils. The main factors which affect the ac-

curacy of this determination include: vegetation cover,
soil properties, and surface roughness. Vegetation is the

most important because a thick enough layer can totally

obscure the soil surface from observation. It appears

that a mature corn crop (7 kg/m2) in plant water content

is the limiting situation, reducing the sensitivity to about

25% of the bare soil case at the the 21 cm wavelength.

Obviously the effect of vegetation would be greater at

shorter wavelengths. Thus microwave approaches could

not be used to determine soil moisture in many forested

situations. The soil properties which effect the micro-
wave response include density and texture, but these

factors will change the slope or sensitivity but will not

reduce the range of the soil moisture effect. However

surface roughness will reduce the range of the micro-

wave response by as much as half in extreme situations,

but the more common effect is perhaps a 10% or 20%

reduction in sensitivity. Also surface roughness and

density are factors which will remain relatively constant
due to infrequent working of agricultural fields.

These basic conclusions have been verifed with mea-

surements from field towers, aircraft and to a limited

extent satellite platforms. The underlying theory or

physical principles and this experimental verification

lead us to believe that a 21 cm radiometer of suitable size

(20 m) can provide repetitive information about surface

soil moisture variations on a global scale with a spatial
resolution useful to hydrometeorology and hydrocli-

matology. In this paper we will provide the documen-

tation for this conclusion along with some results from

large scale experiments demonstrating the approach.

Microwave remote sensing offers four unique ad-

vantages over other spectral regions:

1. The atmosphere is effectively transparent providing

all weather coverage in the decimeter range of wave-

lengths.

2. Vegetation is semitranparent allowing the observa-

tion of underlying surfaces in the decimeter range
of wavelengths.

3. The microwave measurement is strongly dependent

on the dielectric properties of the target which for soil

is a function of the amount of water present.

4. Measurement is independent of solar illumination

which allows day or night observation.

Remote sensing cannot replace ground based meth-

ods for providing high quality profile data at a point. Its

advantage is in mapping conditions at regional, conti-

nental and even global scales and possibly on a repeti-
tive basis. Recently it has been shown that repetitive

measurements of microwave brightness temperatures

can yield subsurface soil hydraulic properties [11].

Passive microwave methods measure the natural

thermal emission of the land surface using very sensitive

detectors, the intensity of this emission is generally ex-

pressed as a brightness temperature, TB, similar to TIR

observations and includes contributions from the at-
mosphere, reflected sky radiation, and the land surface.

However, compared to the TIR wavelengths, atmo-

spheric effects, i.e., atmospheric transmission (s) and the

upwelling radiance (Lj
ATM") in Eq. (3), are negligible at

Fig. 1. ASTER TIR imagery for a region in central Oklahoma, just

west of Oklahoma City. The data were taken on 4 September 2000 at

17:34 GMT and are for band 13 of ASTER, k ¼ 10:7 lm. The tem-

peratures range from 36 �C (black) to 57 �C (white). The spatial res-

olution is 90 m.
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frequencies below about 6 GHz (k > 5 cm). Galactic and

cosmic radiation contribute to sky radiation and have a

known value that varies very little in the frequency range

used for soil water content observations, yielding a

TSKY � 4 K. The brightness temperature of the surface is
related to its emissivity, physical temperature and con-

tributions from the intervening atmosphere, yielding an

expression similar to Eq. (4)

TB ¼ eMTM þ ð1� eMÞTSKY ð5Þ

where eM and TM are the emissivity and physical tem-

perature representing some effective depths in the soil

surface layer, typically 0–5 cm depth for the emissivity at

k ¼ 21 cm and a greater depth for the thermal sampling

especially for dry soils. Since the second term in Eq. (5)
will be on the order of 2 K it is usually neglected thus

yielding after rearranging

eM ¼ TB
TM

ð6Þ

If TM is estimated independently, emissivity can be de-

termined. This can be done using surrogates based on

satellite surface temperature, air temperature observa-

tions, or forecast model predictions. A typical range in

eM is �0.9 for a dry soil to �0.6 for a wet soil comprising

the 0–5 cm layer (see below).
As noted earlier, the basic reason microwave remote

sensing is capable of providing soil water content in-

formation is this large dielectric difference between

water and the other soil components. Since the dielectric

constant is a volume property, the volumetric fraction of

each component must be considered. The computation

of the mixture dielectric constant (soil, air and water)

has been the subject of several studies and there are
different theories as to the exact form of the mixing

equation [22,130]. A simple linear weighting function is

typically used.

Vegetation reduces the sensitivity of the retrieval al-

gorithm to soil water content changes by attenuating the

soil signal and by adding a microwave emission of its

own to the microwave measurement. The attenuation

increases as frequency increases. This is an important
reason for using lower frequencies. At these lower fre-

quencies it is possible to correct for vegetation using a

vegetation water content-related parameter. In studies

reported in Jackson et al. [44] and Jackson and

Schmugge [43], it was found that a linear relationship

between the optical depth and vegetation water content,

w, could be applied. The vegetation water content can be

estimated using a variety of ancillary data sources. One
approach is to establish a relationship between w and a

satellite based vegetation index such as the normalized

difference vegetation index (NDVI) as described in

Jackson et al. [47]. Recently multi-angle measurements

have used to estimate both vegetation water content and

soil moisture [134,136].

The emissivity that results from the vegetation cor-

rection is that of the soil surface. This includes the effects

of surface roughness. These effects must be removed in

order to determine the soil emissivity, which is required

in the inversion from microwave brightness temperature
to soil moisture. One approach to removing this effect is

a model described in Choudhury et al. [18] that yields

the bare smooth soil emissivity, with model parameters

assigned based upon land use and tillage [46].

The soil moisture sampling depth is the layer of the

soil whose dielectric properties determine the surface

emissivity and is a function of the microwave frequency

or wavelength. There are well known theories describing
the reflection resulting from a soil profile with uniform

or varying properties [76,137]. The computations in-

volve a nonlinear weighting that decays with depth.

Field experiments, suggest that the contributing depth is

about 1=4 the wavelength or about 5 cm at k ¼ 21 cm

[75,132].

There has been a long history (30 years) of aircraft

observations of the microwave emission for soil mois-
ture studies [111]. These instruments were non-scanning

but generally operated over a range of wavelengths.

These early results were instrumental in showing the

greater effectiveness of the longer wavelength sensors,

the limited sampling depth and the effect of soil texture

[112]. An example of these early results is given in Fig. 2

which presents TB data over a flight line in central South

Dakota. The data are for several wavelengths from 1.4
to 21 cm over a range of ground condition, including

bare soil, pasture and wheat. The trace of soil moisture

is given at the top and it shows that only the pastures

had significant levels of moisture and only the 21 cm

data showed a response to it. It is from results such as

these that we concluded that a radiometer operating at

21 cm would be most effective for soil moisture sensing.

To improve the spatial coverage, imaging systems at the
21 cm wavelength were developed. In the late 1980s the

21 cm push broom microwave radiometer was used in

several large area mapping experiments, such as FIFE,

Monsoon90 and HAPEX-Sahel [113]. During the 1990s,

much of this work has used the electronically scanned

thinned array radiometer (ESTAR). ESTAR is an L

band horizontally polarized instrument that can provide

image products. It also is a prototype for a new synthetic
aperture antenna technology that is being considered for

use in space [62].

For microwave remote sensing of soil moisture to

reach its promise it is necessary to develop algorithms to

convert the TB observations to quantitative soil moisture

information over large heterogeneous areas on a regular

basis. This has been the focus of several recent field

experiments. Washita�92 was a large scale study of re-
mote sensing and hydrology conducted by NASA and

USDA-ARS using ESTAR over the USDA-ARS Little

Washita Watershed facility in southwest Oklahoma [45].
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Data collection during the experiment included passive

and active microwave observations. Data were collected

over a nine day period in June, 1992. The watershed was

saturated with a great deal of standing water at the

outset of the study. During the experiment there was no

rainfall and surface soil water content observations ex-
hibited a drydown pattern over the period. Surface soil

water content observations were made at sites distrib-

uted over the area. Significant variations in the level and

rate of change in surface soil water content were noted

over areas dominated by different soil textures.

Passive microwave observations were made on eight

days. The ESTAR data were processed to produce

brightness temperature maps of a 740 km2 area on each
of the eight days. Using the algorithm developed by

Jackson et al. [45], these data were converted to soil

water content images. Gray scale images for each day

are shown in Fig. 3. These data exhibited significant

spatial and temporal patterns. Spatial patterns were

clearly associated with soil textures and temporal pat-

terns with drainage and evaporative processes. Rela-
tionships between the ground sampled soil water content

and the brightness temperatures were consistent with

previous results. These data have also been used by

Fig. 2. Brightness temperature traces over a flight line in central South

Dakota from April 1976 at several microwave wavelengths. The air-

craft altitude was 	300 m.

Fig. 3. Near-surface (�0–5 cm) soil water content maps for the

USDA-ARS Little Washita Experimental Watershed facility derived

from passive microwave data collected on a series of days during

Washita�92, June 1992. Spatial resolution is 200 m.
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Rodriguez-Iturbe et al. [108] to study the statistical

structure of soil moisture fields. They did this by ag-

gregating the pixels up to a 1 km
 1 km size and

looking at the variance in the data as a function of pixel

area. They found a power law relationship between the
variance and pixel area with the variance decreasing as

the area increased. The slope of the relationship chan-

ged, generally increasing, as the soils dried.

More recently, ESTAR collected data over a much

larger domain, mapping an area (�40 km east–west and

�260 km north–south) as part of the 1997 Southern

Great Plains Experiment (SGP97; [47]). The area

mapped encompassed the USDA-ARS Little Washita
Watershed, USDA-ARS Grazinglands Research Facil-

ity and Department of Energy Atmospheric Radiation

Measurement, Cloud and Radiation Test Bed, Central

Facility. SGP97 was designed and conducted to extend

surface soil moisture retrieval algorithms based on

passive microwave observations to coarser resolutions,

larger regions with more diverse conditions, and longer

time periods. The ESTAR instrument was used for daily
mapping of surface soil moisture over a one month pe-

riod from mid-June to mid-July. Results showed that the

soil moisture retrieval algorithm performed the same as

in previous investigations (e.g., Washita�92), demon-

strating consistency of both the retrieval and the in-

strument.

Satellite based sensors offer the advantages of large

area mapping and long-term repetitive coverage. For
most satellite systems the revisit time can be a critical

problem in studies involving rapidly changing condi-

tions such as surface soil water content. With very wide

swaths it is possible to obtain twice daily coverage with a

polar orbiting satellite. For most satellites, especially if

constant viewing angle is important, the revisit time can

be much longer. Optimizing the time and frequency of

coverage is a critical problem for soil water content
studies. Currently, all passive microwave sensors on

satellite platforms operate at high frequencies (>7

GHz). A more recent option is the multiple frequency

advanced microwave scanning radiometer (AMSR)

satellite systems that will include a 6.9 GHz channel.

AMSR holds great promise for estimating soil water

content in regions of low levels of vegetation. AMSR is

not the optimal solution to mapping soil water content
but it is the best possibility in the near term. Based on the

published results and supporting theory [1,17,77,82,131],

this instrument should be able to provide surface

moisture information in regions of low vegetation cover,

<1 kgm�2 vegetation water content. To pursue the use

of space observations further research programs are

underway to develop a space based system with a 1.4

GHz channel which would provide improved global soil
moisture information [49]. The soil moisture and ocean

salinity mission is currently being implemented by the

European Space Agency. This instrument will extend the

aperture synthesis approach pioneered by ESTAR to

two dimension and will make dual polarized measure-

ments at a range of angles. With these data it is expected

to be able obtain not only soil moisture but also vege-

tation water content at a 50 km resolution [136].

2.3. Snow cover and water equivalent

The occurrence of precipitation in the form of snow

as opposed to rain typically causes a change in how a
drainage basin responds to the input of water. The

reason for the modified hydrological response is that

snow is held in cold storage on a basin for an extended

period of time before it enters the runoff process. There

is such a vast difference in the physical properties of

snow and other natural surfaces that the occurrence of

snow on a drainage basin can cause significant changes

in the energy and water budgets. As an example, the
relatively high albedo of snow reflects a much higher

percentage of incoming solar shortwave radiation than

snow-free surfaces (80% for relatively new snow as op-

posed to roughly 15% for snow-free vegetation). Snow

may cover up to 53% of the land surface in the northern

hemisphere [23] and up to 44% of the world�s land areas

at any one time. Snow cover and the equivalent amount

of water volume stored supplies at least one-third of the
water that is used for irrigation and the growth of

crops worldwide [121]. In high mountain snowmelt ba-

sins of the Rocky Mountains, USA, as much as 75% of

the total annual precipitation is in the form of snow

[123], and 90% of the annual runoff is from snowmelt

[34].

Snow cover can be detected and monitored with a

variety of remote sensing devices. The greatest number
of applications have been found in the VNIR region of

the electromagnetic spectrum. Because of Landsat and

SPOT frequency of observation problems, many users

have turned to the NOAA polar orbiting satellite with

the AVHRR, which has a resolution of about 1 km in

the 0.58–0.68 lm red band. The frequency of coverage is

twice every 24 h (one daytime pass and one nighttime

pass). The major problem with the NOAA-AVHRR
data is that the resolution of 1 km may be insufficient for

snow mapping on small basins. Data from the MODIS

instrument on NASA�s EOS satellites with 250 m reso-

lution in two visible bands will partially alleviate this

problem.

Despite the various problems mentioned, visible air-

craft and satellite imagery have been found to be very

useful for monitoring both the buildup of snow cover in
a drainage basin and, even more importantly, the dis-

appearance of the snow covered area in the spring. This

disappearance or depletion of the snow cover is impor-

tant to monitor for snowmelt runoff forecasting pur-

poses. It has been recommended that the optimum

frequency of observation of the snow cover during de-
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pletion would be once a week [91]. Depending on the

remote sensing data used, it could be very difficult to

obtain this frequency. Certain snowmelt runoff appli-

cations have been possible with as few as two to three

observations during the entire snowmelt season [91].
Snow on the earth�s surface is, in simple terms, an

accumulation of ice crystals or grains, resulting in a

snowpack which over an area may cover the ground

either completely or partly. The physical characteristics

of the snowpack determine its microwave properties;

microwave radiation emitted from the underlying

ground is scattered in many different directions by the

snow grains within the snow layer, resulting in a mi-
crowave emission at the top of the snow surface being

less than the ground emission. Properties affecting mi-

crowave response from a snowpack include: depth and

water equivalent, liquid water content, density, grain

size and shape, temperature and stratification as well as

snow state and land cover. The sensitivity of the mi-

crowave radiation to a snow layer on the ground makes

it possible to monitor snow cover using passive micro-
wave remote sensing techniques to derive information

on snow extent, snow depth, snow water equivalent

(SWE) and snow state (wet/dry). Because the number of

scatterers within a snowpack is proportional to the

thickness and density, SWE can be related to the

brightness temperature of the observed scene [39]; dee-

per snowpacks generally result in lower brightness

temperatures.
The general approach used to derive SWE and snow

depth from passive microwave satellite data relates back

to those presented by Rango et al. [90] and Kunzi et al.

[51] using empirical approaches and Chang et al. [16]

using a theoretical basis from radiative transfer calcu-

lations to estimate snow depth from SMMR data. As

discussed in Rott [109], the most generally applied al-

gorithms for deriving depth or SWE are based on the
generalized relation given in Eq. (6)

SWE ¼ Aþ B
TBðf1Þ � TBðf2Þ

f2 � f1
ð7Þ

in mm, for SWE > 0, where A and B are the offset and
slope of the regression of the brightness temperature

difference between a high scattering channel (f2, com-

monly 37 GHz) and a low scattering one (f1, commonly

18 or 19 GHz) of vertical or horizontal polarization. No

single global algorithm will estimate snow depth or

water equivalent under all snowpack and land cover

conditions. The coefficients are generally determined for

different climate and land covered regions and for dif-
ferent snow cover conditions; algorithms used in regions

other than for which they were developed and tested

usually provide inaccurate estimates of snow cover.

Also, accurate retrieval of information on snow extent,

depth, and water equivalent requires dry snow condi-

tions, because the presence of liquid water within the

snowpack drastically alters the emissivity of the snow,

resulting in brightness temperatures significantly higher

than if that snowpack were dry. Therefore, an early

morning overpass (local time) is the preferred orbit for

retrieval of snow cover information to minimize wet
snow conditions. It is also recognized that knowledge of

snowpack state is useful for hydrological applications.

Regular monitoring allows detection of the onset of melt

or wet snow conditions [36].

Passive microwave data provides several advantages

not offered by other satellite sensors. Studies have

shown that passive microwave data offer the potential to

extract meaningful snowcover information, such as
SWE, depth, extent and snow state. SSM/I is a part of

an operational satellite system, providing daily coverage

of most snow areas, with multiple passes at high lati-

tudes, hence allowing the study of diurnal variability.

The technique has generally all-weather capability (al-

though affected by precipitation at 85 GHz), and can

provide data during darkness. The data are available in

near-real time, and hence can be used for hydrological
forecasting. There are limitations and challenges in us-

ing microwave data for deriving snow cover information

for hydrology. The coarse resolution of passive micro-

wave satellite sensors such as SMMR and SSM/I (�25

km) is more suited to regional and large basin studies,

although Rango et al. [93] did find that reasonable SWE

estimates could be made for basins of less than 10,000

km2. The AMSR launched on NASA�s EOS satellite,
AQUA, 4 May 2002 will provide a wider range of

wavelengths and with better spatial resolution than what

is currently available.

Another challenge is to incorporate the effect of

changing snowpack conditions throughout the winter

season. Seasonal aging, or metamorphism, results in a

change in the grain size and shape, and this will affect

the microwave emission from the snowpack. In very
cold regions, depth hoar characterized by its large

crystal structure enhance the scattering effect on the

microwave radiation, resulting in lower surface emission

producing an overestimate of SWE or snow depth [5,38].

The increase in brightness temperature associated with

wet snow conditions currently prevents the quantitative

determination of depth or water equivalent since algo-

rithms will tend to produce zero values under these
conditions. The best way to view the seasonal variability

in microwave emission from the snowpack is to compile

a time series of satellite data spanning the entire season

which can then be related to changes in the pack over

the season [127].

In Canada, a federal government program (Climate

Research Branch, Atmospheric Environment Service)

has been ongoing since the early 1980s to develop, val-
idate and apply passive microwave satellite data to de-

termine snow extent, SWE and snowpack state (wet/dry)

in Canadian regions for near-real time and operational
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use in hydrological and climatological applications.

Goodison and Walker [36] provide a summary of the

program, its algorithm research and development, and

future thrusts. For the prairie region a SWE algorithm

was empirically derived using airborne microwave ra-
diometer data [37], and tested and validated using

Nimbus-7 SMMR and DMSP SSM/I satellite data [35].

After 10 winter seasons in operation, the Canadian

prairie SWE mapping program has successfully dem-

onstrated a useful application of SSM/I derived snow

cover information for operational hydrological analyses.

It is also a cooperative program in that user feedback

has served to enhance the validation and the refinement
of the SSM/I SWE algorithm [36]. One enhancement has

been the development of a wet snow indicator [126],

which overcomes a major limitation of the passive mi-

crowave technique by providing the capability to dis-

criminate wet snow areas from snow-free areas and

hence a more accurate retrieval of snow extent during

melting conditions.

Because areal snow cover extent data have been
available since the 1960s, various investigators have

found many useful applications. A team of scientists

from a variety of US government agencies developed

plans in the early 1980s for operational snow mapping

by the US National Weather Service (NWS) for hy-

drological purposes. In 1986, NWS adopted these plans

and proceeded to develop operational remote sensing

products, mostly for snow hydrology. The most widely
distributed products of the NWS National Operational

Hydrologic Remote Sensing Center are periodic river

basin snow cover extent maps from NOAA-AVHRR

and the geostationary operational environmental satel-

lite (GOES). Digital maps for about 4000 basins in

North America are produced about once per week and

are used by a large group of users including the NWS
River Forecast Centers and individual water authorities.

Very few hydrological models have been developed to

be compatible with remote sensing data. One of the few

models that was developed requiring direct remote

sensing input is the snowmelt runoff model (SRM) [64].

SRM requires remote sensing measurements of the snow

covered area in a basin. Although aircraft observations

can be used, satellite-derived snow cover extent is the
most common. SRM employs the degree day approach

to melting the snow cover in a basin. To date, this ver-

sion of SRM has been successfully tested on over 80

basins in 25 countries worldwide.

Spain is also using NOAA-AVHRR snow cover data

for the forecasting of snowmelt runoff volume during

the spring and summer months in the Pyrenees. Devel-

opment of subpixel analysis techniques [31] has allowed
snow cover mapping on basins as small as 10 km2 using

the AVHRR data. This approach could make NOAA-

AVHRR data more widely useable for hydrological

applications after it is tested in different geographic re-

gions. Gomez-Landesa and Rango [32] applied NOAA-

AVHRR snow cover data as input to the SRM for use

in forecasting the seasonal snowmelt runoff volume in

the Pyrenees to assist in planning hydropower produc-
tion. More recently, Gomez-Landesa and Rango [33]

compared snow cover mapping of NOAA-AVHRR

Fig. 4. NOAA-AVHRR (a) and MODIS (b) derived snow cover derived snow cover for the Noguera Ribagorzana Basin (572.9 km2) in the Central

Pyrenees of Spain on 7 April 2000. The different gray levels correspond to different percents of snow cover in each NOAA-AVHRR and MODIS

pixel.
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with the higher resolution (250 m pixel) data from the

MODIS on NASA�s Terra satellite platform. Fig. 4

shows the NOAA-AVHRR and MODIS derived snow

cover for the Noguera Ribagorzana Basin (572.9 km2) in

the Central Pyrenees of Spain on 7 April 2000. The
different gray levels correspond to different percents of

snow cover in each NOAA-AVHRR and MODIS pixel.

The correlation between AVHRR and MODIS snow

maps were on the order of 0.8–0.9 with good agreement

between the snow distribution with altitude obtained

from both instruments. The agreement was good even in

very small basins with an area �8.3 km2.

2.4. Landscape roughness and vegetation cover

Roughness refers to the unevenness of the earth�s
surface due to natural processes (i.e., topography, veg-

etation, erosion) or human activities (i.e., buildings,
power lines, forest clearings). Roughness affects trans-

port of hydrometeorological fluxes between the land

surface and atmosphere as well as below the surface, i.e.,

infiltration and water movement. Roughness is often

separated in different complexities related to its effects

on land surface–atmosphere dynamics. The complexities

are (1) vegetation and urban roughness where the hor-

izontal scale is relatively small, (2) transition roughness
between landscape patches (i.e., plowed field next to a

forest), and (3) topographic roughness due to changing

landscape elevations. These complexities and scales have

different effects on wind, heat, and water movement and

are difficult to measure in the field at large scales. Lidar,

synthetic aperture radar (SAR), digital elevation mod-

els, and photogrammetry are among the remote sensing

techniques that have been used to measure landscape
surface roughness properties over large areas.

The need for accurate and rapid measurements and

assessments of land surface terrain features to estimate

the effects of land surface roughness on hydrometeoro-

logical processes led to the application of lidar distanc-

ing technology from an aircraft-based platform [94,98].

Satellite platforms have also been employed [40].

The first applications of the airborne lidar altimeter
were to measure topography [63] and sea ice roughness

[106]. Lidar altimeters can measure long topographic

profiles quickly and efficiently. An example of a topo-

graphic profile is shown in Fig. 5 using 	45 s of profiling

lidar altimeter data collected in the USDA-ARS Rey-

nolds Creek Experimental Watershed. The length of this

profile is 3.5 km and was part of a 10 km profile. The

inset in Fig. 5 shows the data at full resolution making
the vegetation canopy visible in greater detail. Topo-

graphic, transitional, and canopy roughness can be de-

termined from this profile. Ease and speed of data

collection would allow measurement of several profiles

with a minimum of extra survey cost. Rango et al. [92]

used scanning lidar data to study morphological char-

acteristics of shrub coppice dunes in the USDA-ARS

Jornada Experimental Range situated within the Chi-

huahuan desert. They calculated dune distribution, area,

and volume from the scanning laser data. Lidar mea-

surements provide spatial data necessary to understand

the effects of topography at all scales on roughness

patterns of the landscape.
Detailed measurements of microtopography over

distances of 1–2 m to understand the development and

patterns of surface roughness using a profiling airborne

lidar altimeter for a bare agricultural field is shown in

Fig. 6 (upper profile). This profile shows the surface

microroughness superimposed on the overall topogra-

phy measured with a lidar altimeter. A moving average

filter was used to remove random and system noise [65]
and is shown with the lower profile in Fig. 6. Micro-

roughness of soil and vegetation has been shown to in-

fluence rill development, germination, water retention,

Fig. 5. A topographic profile measured using an airborne lidar al-

timeter. The profile was made by block averaging 16 lidar measure-

ments. The insert shows a 100 m section at full resolution (no

averaging).

Fig. 6. A bare soil profile measured in an agricultural field. The lower

profile was derived from the upper profile (raw data) using a 1 1

measurement moving average filter.
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infiltration, evaporation, runoff, and soil erosion by

water and wind [139]. Lidar altimeter measurements of

microroughness of the landscape surface can be used to

understand and calculate the effects of roughness on

evaporation, soil moisture, runoff, and soil erosion at
field and landscape scales.

Entrenched erosional features need to be quantified

to estimate their effects on water movement and soil loss

across the landscape. Measurements of these features

can be difficult and time consuming using ground-based

techniques. Measurement of large erosional landscape

features can be made rapidly using airborne lidar data

[97]. The shape and roughness of gullies and stream
channels can be defined (see Fig. 7). The lower dotted

line in figure represents the maximum stage of this

stream channel cross section, but other stages could be

represented and used to calculate the carrying capacity

at different channel and floodplain stages. Data on

stream bottom roughness can also be used to estimate

resistance to flow of the stream. Channel and flood plain

cross sections and roughness allow better estimates of
channel and flood plain carrying capacity and resistance

to flow. Data on channel, gully, and flood plain size,

roughness, and degradation can help in design, devel-

opment, and placement of physical structures to control

and calculate flows.

Vegetation canopies are an important part landscape

roughness that are difficult to measure by conventional

techniques. Airborne lidar measurements provided ac-
curate measurements of canopy top roughness (Fig. 8a),

heights (Fig. 8b) and cover [95,96,133]. Scanning lasers

[92] can provide a 3D view of canopy structure needed

understand canopy roughness. Lidar measurements of

vegetation properties were made at eight locations in the

USDA-ARS Walnut Gulch Experimental Watershed in

Arizona [133] and used in an algorithm for estimating

effective aerodynamic roughness, an important para-

meter in ET models [68]. These remote estimates agreed

with aerodynamic roughness calculated from microme-
teorological methods using tower-based measurements

[52]. Fractals calculated for lidar data have also been

used as a way to separate roughness [83,84,99] due to

topography and vegetation and to show seasonal pat-

terns in roughness. This type of information from lidar

should provide more accurate parameter estimation for

models computing hydrometeorological fluxes.

2.5. Remote sensing techniques to assess water quality

Water quality is a general descriptor of water prop-

erties in terms of physical, chemical, thermal, and/or
biological characteristics. In situ measurements and

collection of water samples for subsequent laboratory

analyses provide accurate measurements for a point in

time and space but do not give either the spatial or

temporal view of water quality needed for accurate as-

sessment or management of water bodies. Substances in

surface water can significantly change the backscattering

characteristics of surface water. Remote sensing tech-
niques for monitoring water quality depend on the

ability to measure these changes in the spectral signature

backscattered from water and relate these measured

changes by empirical or analytical models to water

quality parameters. The optimal wavelength used to

measure a water quality parameter is dependent on the

substance being measured, its concentration, and the

sensor characteristics.
Major factors affecting water quality in water bodies

across the landscape are suspended sediments (turbid-

ity), algae (i.e., chlorophylls, carotenoids), chemicals

(i.e., nutrients, pesticides, metals), dissolved organic

matter (DOM), thermal releases, aquatic vascular

plants, pathogens, and oils. Suspended sediments, algae,

Fig. 7. A lidar altimeter measured stream cross section. Lower dashed

line represents the stream cross section and upper dashed line repre-

sents the flood plain cross section.

Fig. 8. A forest canopy (a) and tree heights (b) measured using an

airborne lidar altimeter.
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DOM, oils, aquatic vascular plants, and thermal releases

change the energy spectra of reflected solar and/or

emitting thermal radiation from surface waters which

can measured by remote sensing techniques. Most

chemicals and pathogens do not directly affect or change
the spectral or thermal properties of surface waters so

they can only be inferred indirectly from measurements

of other water quality parameters affected by these

chemicals.

Empirical or analytical relationships between spectral

properties and water quality parameters are established.

The general forms of these empirical equations are

Y ¼ Aþ BX or Y ¼ ABX ð8Þ
where Y is the remote sensing measurement (i.e., radi-

ance, reflectance, energy) and X is the water quality

parameter of interest (i.e., suspended sediment, chloro-

phyll). A and B are empirically derived factors. In

empirical approaches statistical relationships are deter-

mined between measured spectral/thermal properties

and measured water quality parameters. Often infor-
mation about the spectral/optical characteristic of the

water quality parameter is used to aid in the selection of

best wavelength(s) or best model in this empirical ap-

proach. The empirical characteristics of these relation-

ships limit their applications to the condition for which

the data were collected.

Suspended sediments are the most common pollutant

both in weight and volume in surface waters of fresh-
water systems [61,107]. Suspended sediments increase

the radiance emergent from surface waters (Fig. 9) in the

VNIR proportion of the electromagnetic spectrum [105].

Significant relationships between suspended sediments

and radiance or reflectance from spectral wavebands or

combinations of wavebands on satellite and aircraft

sensors have been shown. Curran and Novo [19] in a

review of remote sensing of suspended sediments found

that the optimum wavelength was related to suspended

sediment concentration. Ritchie and Cooper [101,102]

showed that an algorithm for relating remotely sensed

data to the sediment load developed for one year was

applicable for several years. Once developed, an algo-
rithm should be applicable until some watershed event

changes the quality (size, color, mineralogy, etc.) of

suspended sediments delivered to the lake. While most

researchers and managers agree that suspended sedi-

ments can be mapped with remotely sensed data, the

technique with the current spatial resolution of satellite

data [100,103] does not allow the detail mapping of

water bodies or measurements in or from streams
needed for management decisions.

Remote sensing has been used to measure chlorophyll

concentrations spatially and temporally. As with sus-

pended sediment measurements, most remote sensing

studies of chlorophyll in water are based on empirical

relationships between radiance/reflectance in narrow

bands or band ratios and chlorophyll. Measurements

made in situ [110] show spectra (Fig. 10) with increasing
reflectance with increased chlorophyll concentration

across most wavelengths but areas of decreased reflec-

tance in the spectral absorption region for chlorophyll

(675–680 nm). A variety of algorithms and wavelengths

have been used successfully to map chlorophyll con-

centrations of the oceans, estuaries and fresh waters.

While estimating chlorophyll by remote sensing tech-

nique is possible, studies have also shown that the broad
wavelength spectral data available on current satellites

(i.e., Landsat, SPOT) do not permit discrimination of

Fig. 9. The relationship between reflectance and wavelength as af-

fected by the concentration of suspended sediments [105].

Fig. 10. Relative contributions of chlorophyll and suspended sediment

to a reflectance spectra of surface water. Based on in situ laboratory

measurements made 1 m above the water surface by Schalles et al.

[110].
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chlorophyll in waters with high suspended sediments

[21,97,104] due to the dominance of the spectral signal

from the suspended sediments. Research on the rela-

tionship between chlorophyll and the narrow band

spectral details at the ‘‘red edge’’ of the visible spectrum
[30] has shown a linear relationship between chlorophyll

and the difference between the emergent energy in the

primarily chlorophyll scattering range (700–705 nm) and

the primarily chlorophyll absorption range (675–680

nm). The relationship exists even in the presence of high

suspended sediment concentrations that can dominate

the remainder of the spectrum as seen in Fig. 10. These

findings suggest new approaches for application of air-
borne and spaceborne sensors to exploit these phe-

nomena to estimate chlorophyll in surface waters under

all conditions as hyperspectral sensors are launched and

data become available.

While current remote sensing technologies have many

actual and potential applications for assessing water re-

sources and for monitoring water quality, limitations in

spectral and spatial resolution of many current sensors
on satellites currently restrict the wide application of

satellite data for monitoring water quality. New satellites

(i.e., SEAWIFS, EOS, MOS, IKONOS, etc.) and sensors

(hyperspectral, high spatial resolution) already launched

or planned to be launched over the next decade will

provide the improved spectral and spatial resolutions

needed to monitor water quality parameters in surface

waters from space platforms. Research needs to focus on
understanding the effects of water quality on optical and

thermal properties of surface waters so that physically

based models can be developed relating water quality

parameters to optical measurements made by remote

sensing techniques. Hyperspectral data from space plat-

forms will allow us to discriminate between water quality

parameters and to develop a better understanding of

light/water/substance interactions. Such information
should allow us to move away from empirical ap-

proaches now being used and develop algorithms that

will allow us to use the full resolution electromagnetic

spectrum to monitor water quality parameters.

3. Remote sensing of hydrometeorological fluxes

3.1. Evapotranspiration

One of the more common ways in estimating ET is to

rearrange Eq. (2) solving for the latent heat flux, LE, as

a residual in the energy balance equation for the land
surface, namely,

LE ¼ RN � G� H ð9Þ

Remote sensing methods for estimating these compo-

nents are described in [53]. Typically with reliable esti-

mates of solar radiation, differences between remote

sensing estimates and observed RN � G are within 10%.

The largest uncertainty in estimating LE comes from

computing H. In resistance form, the relationship be-

tween H and the surface-air temperature difference is
expressed as

H ¼ qCp
T0 � TA

RA

ð10Þ

where T0 is the aerodynamic surface temperature (T0 is
the temperature satisfying the traditional expressions for

the resistances; see [78]), TA is the near-surface air tem-

perature, is air density, Cp is the specific heat of air, and

RA is the aerodynamic resistance. Since T0 cannot be

measured the surface radiometric temperature is often

substituted in Eq. (10) and is frequently rewritten as

(e.g., [122]),

H ¼ qCp
TRðhÞ � TA
RA þ REX

ð11Þ

where REX is the so-called ‘‘excess resistance’’, which

attempts to account for the non-equivalence of T0 and

TRðhÞ. The radiometric temperature observations, TRðhÞ,
at some viewing angle h, are converted from satellite

brightness temperatures and are an estimate of the land

surface temperature, TSURF. Thus Eqs. (9)–(11) offer the
possibility of mapping surface heat fluxes on a regional

scale if RA and REX can be estimated appropriately. REX

has been related to the ratio of roughness lengths for

momentum, zOM, and heat, zOH, and the friction velocity

u� having the form (e.g., [122]),

REX ¼ k�1 ln
zOM

zOH

� �
u�1
� ð12Þ

where k 	 0:4 is von Karman�s constant. This is the

classical definition which addresses the fact that mo-

mentum and heat transport from the roughness elements

differ [10], but is just one of several that have been for-

mulated (e.g., [66]). There have been numerous efforts in

recent years to apply Eqs. (11) and (12) and determine

the behavior of REX or zOH for different surfaces, but no
universal relation exists [53]. Large spatial and temporal

variations in the magnitude of zOH have been found.

Nevertheless, solving the LE with the approach sum-

marized in Eqs. (9)–(12) is still widely applied.

It is important to recognize the fact that satellite

observations are essentially ‘‘instantaneous’’ or merely

‘‘snap shots’’ of the surface conditions. For many

practical applications, LE estimates at longer time
scales, namely daily values, are needed. This was the

impetuous for an empirical scheme for estimating daily

LE, LED, [41] using observations of TRðhÞ and TA near

midday or maximum heating,

LED ¼ RN ;D � B TR;iðhÞð � TA;iÞn ð13Þ
where the subscript i and D represent ‘‘instantaneous’’

and daily values, respectively. The coefficients B and n
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have been related to physical properties of the land

surface and atmosphere namely, zOM and stability, re-

spectively [118]. Both theoretical and experimental

studies have evaluated Eq. (13) lending further support

for its utility as a simple technique for estimating LED

[12,13,60]. In fact, studies have applied Eq. (13) to me-

teorological satellites for longer term regional ET

monitoring in the Sahelian regions of Africa and for

France [119,120].

However, a major drawback with these approaches

summarized above is that there is no distinction made

between soil and vegetation canopy components. Hence

vegetation water use or stress cannot be assessed. Fur-
thermore, as evidence from many previous studies both

the resistances in Eq. (11) and consequently the B pa-

rameter in Eq. (13) are not uniquely defined by surface

roughness parameters. In addition to experimental

evidence (e.g., [124,125]), Kustas et al. [58] using a

complex soil-vegetation-atmosphere-transfer (SVAT)

model (Cupid [79]) have shown the lack of a unique

relationship between TRðhÞ and the ‘‘aerodynamic’’
surface temperature, T0.

An alternative approach recently proposed considers

the soil and vegetation contribution to the total or

composite heat fluxes and soil and vegetation tempera-

tures to the radiometric temperature measurements in a

so-called ‘‘two-source’’ modeling (TSM) scheme [80].

This allows for Eq. (10) to be recast into the following

expression:

H ¼ qCp
TRðhÞ � TA

RR

ð14Þ

where RR is the radiometric-convective resistance given

by [80],

RR ¼ TRðhÞ � TA
TC � TA

RA

þ TS � TA
RA þ RS

: ð15Þ

TC is the canopy temperature, TS is the soil temperature,

and RS is the soil resistance to heat transfer. An estimate

of leaf area index or fractional vegetation cover, fC, is
used to estimate TC and TS from TRðhÞ,

TRðhÞ 	 fCðhÞT 4
C

�
þ ð1� fCðhÞÞT 4

S

�1=4 ð16Þ

where fCðhÞ is the fractional vegetative cover at radio-

meter viewing angle h, and RS is computed from a rel-

atively simple formulation predicting wind speed near

the soil surface [80]. With some additional formulations

for estimating canopy transpiration, and the dual re-

quirement of energy and radiative balance of the soil
and vegetation components, closure in the set of equa-

tions is achieved. Through model validation studies,

revisions to the original two-source formulations have

been made [56–59] which improved the reliability of flux

estimation under a wider range of environmental con-

ditions. The modifications include: (i) replacing the

commonly used Beer�s Law expression for estimating the

divergence of the net radiation through the canopy layer

with a more physically based algorithm; (ii) adding a

simple method to address the effects of clumped vege-

tation on radiation divergence and wind speed inside the
canopy layer, and radiative temperature partitioning

between soil and vegetation components; (iii) a scheme

for adjusting the magnitude of the Priestley–Taylor [89]

coefficient, apt, used in estimating canopy transpiration

for advective and stressed canopy conditions; and (iv)

developing a new soil aerodynamic resistance formula-

tion whose magnitude is a function of both convective

(temperature) and mechanical (wind) turbulent trans-
port.

Earlier studies recognized the need to consider frac-

tional vegetation cover onET using information provided

in the vegetation index-radiometric temperature, VI-

TRðhÞ, space [88]. He used an energy balance model for

computing spatially distributed fluxes from the variability

within the normalized difference vegetation index NDVI-

TRðhÞ space from a single satellite scene. NDVI was used
to estimate the fraction of a pixel covered by vegetation

and showed how one could derive bare soil and vegeta-

tion temperatures and, with enough spatial variation in

surface moisture, estimate daily ET for the limits of full

cover vegetation, dry and wet bare soils.

Following Price [88] and Carlson et al. [14,15] com-

bined an atmospheric boundary layer (ABL) model with

a SVAT for mapping surface soil moisture, vegetation
cover and surface fluxes. Model simulations are run for

two conditions: 100% vegetative cover with the maxi-

mum NDVI being known a priori, and with bare soil

conditions knowing the minimum NDVI. Using ancil-

lary data (including a morning sounding, vegetation and

soil type information) root-zone and surface soil mois-

ture are varied, respectively, until the modeled and

measured TRðhÞ are closely matched for both cases so
that fractional vegetated cover and surface soil moisture

are derived. Further refinements to this technique have

been developed by Gillies and Carlson [29] for potential

incorporation into climate models. Comparisons be-

tween modeled-derived fluxes and observations have

been made recently by Gillies et al. [28] indicating ap-

proximately 90% of the variance in the fluxes were

captured by the model.
In a related approach, Moran et al. [70,74] defined

theoretical boundaries in VI-(TRðhÞ � TA) space using

the Penman–Monteith equation in order to extend the

application of the crop water stress index to partial

vegetation cover (see below). The boundaries define a

trapezoid, which has at the upper two corners unstressed

and stressed 100% vegetated cover and at the lower two

corners, wet and dry bare soil conditions. In order to
calculate the vertices of the trapezoid, measurements of

RN, vapor pressure, TA, and wind speed are required as

well as vegetation specific parameters; these include
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maximum and minimum VI for the full-cover and bare

soil case, maximum leaf area index, and maximum and

minimum stomatal resistance. Moran et al. [70] analyze

and discuss several of the assumptions underlying the

model, especially those concerning the linearity between
variations in canopy-air temperature and soil-air tem-

peratures and transpiration and evaporation. Informa-

tion about ET rates are derived from the location of the

VI-(TRðhÞ � TA) measurements within the date and time-

specific trapezoid. This approach permits the technique

to be used for both heterogeneous and uniform areas

and thus does not require having a range of NDVI and

surface temperature in the scene of interest as required
by Carlson et al. [15] and Price [88]. Moran et al. [70]

have compared the method for estimating relative rates

of ET with observations over agricultural fields and

showed it could be used for irrigation scheduling pur-

poses. More recently, Moran et al. [71] have shown the

technique has potential for computing ET over natural

grassland ecosystems.

All these modeling schemes however, are susceptible
to errors in the radiometric temperature observations

and most require screen level meteorological inputs

(primarily wind speed, u, and air temperature, TA, ob-
servations) which at regional scales suffer from errors of

representativeness. Approaches using remotely sensed

data for estimating the variation of these quantities are

being developed and tested [6,7,26]. How reliable the

algorithms are for different climatic regimes needs to be
evaluated.

A modeling framework has recently been developed

to address these limitations [4,67] through an energy

closure scheme, Atmospheric-Land-EXchange-Inverse

(ALEXI) which employs the TSM approach [80] to also

address the non-uniqueness of the radiometric–aerody-

namic temperature relationship. ALEXI uses the growth

of the ABL, a quantity sensitive to heat flux input to the
lower atmosphere, and coupling this growth to the

temporal changes in surface radiometric temperature

from the geosynchronous operational environmental

satellite (GOES). Using temporal changes of brightness

temperatures, errors in the conversion to radiometric

surface temperatures are significantly mitigated. The use

of an energy balance method involving the temporal

change of the height of the ABL moderates errors that
arise in schemes that utilize the surface-air temperature

gradient for estimating the heat fluxes since the ALEXI

model derives local air temperature at an interface

height of 	50 m.

Another much simpler scheme, which also uses the

TSM framework, employs the time rate of change in

radiometric temperature and air temperature observa-

tions from a nearby weather station in a simple formu-
lation for computing regional heat fluxes, called the

dual-temperature-difference (DTD) approach [81]. Al-

though this technique requires air temperature obser-

vations, by using a time difference in air temperature,

errors caused by using local shelter level observations

for representing a region are still reduced. Moreover, the

scheme is simple, thus it is computationally efficient and

does not require atmospheric sounding data for initial-
ization. Preliminary comparisons of regional scale ET

output over the central US between DTD and the more

computational intensive and complex ALEXI scheme

show good agreement in the patterns [59].

An example of application of the TSM approach for

estimating daily ET is illustrated in Figs. 11 and 12 for

the September 4, 2000 ASTER data. Images of TRðhÞ
and NDVI computed from the ASTER red and near-
infrared reflectance data and the multi-spectral TIR

data are given in Fig. 11 [25]. The NDVI image shows

bare soil with values �0.0 (light gray) and senes-

cent grazing lands with values �0.2 (dark gray). Sur-

face temperature imagery distinguishes bare soils, at

Fig. 11. Surface temperatures and NDVI values for the portion of Fig.

1 outlined by the white box. The area is 	30
 8 km. The temperatures

range from 36 to 57 �C and the ndvi values range from �0.1 to 0.5.

Fig. 12. Estimated daily evapotranspiration over the El Reno, Okla-

homa study area using ASTER observation at about 11:30 am. A

drought occurred during the summer of 2000, and by September many

of the fields were either plowed or contained senescent vegetation. In

this image, 0–1 corresponds to dry soils, 4 to grass lands, and 68 to

lakes, ponds and riparian zones.
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55–60 �C (light gray), from grazing lands, at �45 �C
(medium gray). These remote sensing inputs, in combi-

nation with TSM, resulted in 90 m scale estimates of H

and LE. Comparison with ground-based energy balance

observations using the Bowen ratio technique show
underestimated H and Rn, but close agreement for LE.

Assuming constant daytime evaporative fraction, in-

stantaneous values can be integrated to yield daily

evaporative flux estimates given in Fig. 12. The latter

range from about 5 mm/day for the grazing lands and 8

mm/day for the water bodies. Many of the low ET rates

are from fields that are either bare soil or contain wheat

stubble from the summer winter wheat harvests, which
generally have the highest TRðhÞ and 06NDVI6 0:1.
Higher ET rates come from grassland sites (NDVI

P 0.2) with the highest rates over irrigated crop fields

and riparian areas along streams where NDVIP 0:4
and water bodies where NDVI6 0 (Fig. 11).

4. Concluding remarks

Algorithm and model development with existing and

new remote sensing technologies for assessing hydro-

meteorological state variables and fluxes is considered

critical since this is the only technology available that
can ultimately provide the capability to monitor crop

development and yield via stress indicators and plant

water use over a range of spatial scales, from field, farm,

and watershed, up to regional scales. To attain this goal,

new research directions to address science questions

impeding hydrometeorological research.

One area is in developing a framework for combining

multi-frequency remote sensing information, from the
visible to microwave wavelengths for more reliable es-

timation of vegetation and soil properties and states.

There is empirical and theoretical evidence that SAR

backscatter in combination with optical data (i.e., visi-

ble, through TIR wavelengths) may provide useful in-

formation about crop water stress [72,73]. At high

frequencies (�13 GHz), field experiments have shown

that the radar signal was particularly sensitive to such
plant parameters as leaf area index, plant biomass, and

percentage of vegetation cover. At low frequencies (�5

GHz), many studies have shown that the radar signal is

very sensitive to soil moisture, though this sensitivity

decreased with increasing vegetation cover.

In a related approach, remotely sensed near-surface

moisture from a passive microwave sensor has been used

in combination with optical data for estimating the soil
and vegetation energy balance. The model has been

applied over a semiarid area in southern Arizona [55],

and in the Southern Great Plains in Oklahoma [54].

Comparison of model computed ET with ground- and

aircraft-based observations showed good results, with

discrepancies between modeled and observed ET aver-

aging �15%. It is also shown that it may be possible to

simulate the daytime fluxes with only a single microwave

observation.

Another important area related to scaling up from

field to regional scales, is the effects of landscape het-
erogeneity on atmospheric dynamics and mean air

properties and resulting feedbacks on the land surface

fluxes. This can be captured in a modeling framework

using large eddy simulation (LES). LES models simulate

the space and time dynamics of ABL turbulence and

the interactions with the land surface using a numeri-

cal solution of the Navier–Stokes equations (e.g., [2]).

However, most studies to date addressing land surface
heterogeneity using LES have described surface

boundary conditions as predefined fluxes with artificial

variability or with spatial variability defined to match

the surface flux fields estimated from experimental data

at a particular site. The questions of how the surface

heterogeneity affects ABL heterogeneity, and how the

surface and air properties in turn affect the flux fields

that develop over a region with heterogeneous surface
properties are left unanswered in most LES studies.

The LES-remote sensing model recently developed by

Albertson et al. [3] couples remotely sensed surface

temperature and soil moisture fields (2D) to the dynamic

(4D) ABL variables via the TSM scheme described

earlier; hence, separate and explicit contributions from

soil and vegetation (i.e., two sources) to mass and energy

exchanges are included. This is a merger of active lines
of research: the use of remotely sensed land surface

properties to study water and energy fluxes, and the use

of LES to study the impacts of surface variability on

ABL processes. This LES-remote sensing model can run

over a �10 km2 domain at relatively high spatial reso-

lution (�100 m) with remotely sensed vegetation cover,

surface soil moisture and temperature defining surface

heterogeneities governing atmospheric exchanges/inter-
actions with the land surface. Typically, land–atmo-

sphere models are either driven by a network of surface

meteorological observations, or use energy conservation

principles applied to ABL dynamics to deduce air tem-

perature [4]. However, neither approach considers the

resulting impact/feedback of surface heterogeneity on

atmospheric turbulence and the resulting spatial features

of the mean air properties, particularly at the patch or
local scale. The predictions from the LES-remote sens-

ing modeling scheme will provide a benchmark for as-

sessing the impact of a range of surface heterogeneity

features on land–atmosphere predictions neglecting such

coupling.
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